(1)欲证EB∥平面PAD,根据直线与平面平行的判定定理可知只需证EB与平面PAD内一直线平行,取PD的中点F,连接FA,FE,根据中位线定理可知EF∥AB,EF=AB,从而ABEF是平行四边形,则EB∥FA,EB⊄平面PAD,FA⊂平面PAD,满足定理所需条件;
(2)欲证BE⊥平面PDC,根据直线与平面垂直的判定定理可知只需证BE与平面PDC内两相交直线垂直,而BE∥AF,可先证
AF⊥平面PDC,而AF⊥PD,PD∩CD=D,PD⊂平面PDC,CD⊂平面PDC,满足线面垂直的判定定理,问题得证.
证明 (1)取PD的中点F,连接FA,FE,则EF为△PDC的中位线.
∴EF∥CD,EF=CD.∵BA⊥AD,CD⊥AD.∴AB∥CD∵CD=2AB,∴AB=CD.
∴EF∥AB,EF=AB.∴ABEF是平行四边形.
∴EB∥FA.∵EB⊄平面PAD,FA⊂平面PAD∴EB∥平面PAD(6分)
(2)∵PA⊥底面ABCD,CD⊂底面ABCD
∴PA⊥CD∵CD⊥AD,PA∩AD=A
PA⊂平面PAD,AD⊂平面PAD
∴CD⊥平面PAD,∵AF⊂平面PAD
∴CD⊥AF.
∵PA=AD,PF=FD∴AF⊥PD.
∵PD∩CD=D,PD⊂平面PDC,CD⊂平面PDC
∴AF⊥平面PDC.由(1)可知,BE∥AF
∴BE⊥平面PDC