已知函数f(x)对任意实数x、y都有f(xy)=f(x)•f(y),且f(-1)=1,f(27)=9,当0≤x<1时,0≤f(x)<1.
(1)判断f(x)的奇偶性;
(2)判断f(x)在[0,+∞)上的单调性,并给出证明;
(3)若a≥0且f(a+1)≤
,求a的取值范围.
考点分析:
相关试题推荐
已知函数f(x)=x
2+x-2,设满足“当
时,不等式f(x)+3<2x+a恒成立”的实数a的集合为A,满足“当x∈[-2,2]时,g(x)=f(x)-ax是单调函数”的实数a的集合为B,求A∩C
RB(R为实数集).
查看答案
某省两相近重要城市之间人员交流频繁,为了缓解交通压力,特修一条专用铁路,用一列火车作为交通车,已知该车每次拖4节车厢,一日能来回16次,如果每次拖7节车厢,则每日能来回10次,每日来回的次数是车头每次拖挂车厢个数的一次函数,每节车厢能载乘客110人.问这列火车每天来回多少次,每次应拖挂多少车厢才能使运营人数最多?并求出每天最多运营人数.
查看答案
已知
.
①化简f(α).
②若sinα是方程10x
2+x-3=0的根,且α在第三象限,求f(α)的值.
③若a=
,求f(α)的值.
查看答案
已知A={x|-1<x<2},B={x|2
x>1}
(1)求A∩B和A∪B;
(2)若记符号A-B={x|x∈A,且x∉B},
①在图中把表示“集合A-B”的部分用阴影涂黑;
②求A-B和B-A.
查看答案