(1)由,知a1+a2+a3+…+an=,所以,故an-an-1=3.所以{an}为等差数列,公差d=3.由a2,a4,a9成等比数列,解得a1=1.由此能求出数列{an}的通项公式.
(2)由bn=an+n-1=3n-2+n-1=4n-3,知==,故Tn==,由此能求出数列的前n项和Tn,并证明.
【解析】
(1)∵,
∴a1+a2+a3+…+an=,
即6(a1+a2+a3+…+an)=(an+1)(an+2),
∴6(a1+a2+a3+…+an-1)=-3an+2=(an-1)(an-2),
即6(a1+a2+a3+…+an-1)=6Sn-1,
又由已知可得6Sn-1=(an-1+1)(an-1+2),
故(an-1+1)(an-1+2)=(an-1)(an-2),
∴,
,
(an-an-1)(an+an-1)=3(an+an-1)
∴an-an-1=3.所以{an}为等差数列,公差d=3.
∵a2,a4,a9成等比数列,
∴3+a1,9+a1,24+a1成等比数列,
∴,
解得a1=1.
∴an=a1+(n-1)d=1+3(n-1)=3n-2.
(2)∵bn=an+n-1=3n-2+n-1=4n-3,
∴==,
∴Tn=
==.
∵Tn==,
∴,
∵n∈N*,∴当n=1时,Tn取最小值.
故.