满分5 > 高中数学试题 >

如图一,平面四边形ABCD关于直线AC对称,∠A=60°,∠C=90°,CD=2...

如图一,平面四边形ABCD关于直线AC对称,∠A=60°,∠C=90°,CD=2.把△ABD沿BD折起(如图二),使二面角A-BD-C的余弦值等于manfen5.com 满分网.对于图二,完成以下各小题:
(Ⅰ)求A,C两点间的距离;
(Ⅱ)证明:AC⊥平面BCD;
(Ⅲ)求直线AC与平面ABD所成角的正弦值.

manfen5.com 满分网
(I)取BD的中点E,先证得∠AEC就是二面角A-BD-C的平面角,再在△ACE中利用余弦定理即可求得A,C两点间的距离; (II)欲证线面垂直:AC⊥平面BCD,转化为证明线线垂直:AC⊥BC,AC⊥CD,即可; (III)欲求直线AC与平面ABD所成角,先结合(I)中的垂直关系作出直线AC与平面ABD所成角,最后利用直角三角形中的边角关系即可求出所成角的正弦值. 【解析】 (Ⅰ)取BD的中点E,连接AE,CE, 由AB=AD,CB=CD,得:AE⊥BD,CE⊥BD ∴∠AEC就是二面角A-BD-C的平面角, ∴(2分) 在△ACE中, AC2=AE2+CE2-2AE•CE•cos∠AEC = ∴AC=2(4分) (Ⅱ)由,AC=BC=CD=2 ∴AC2+BC2=AB2,AC2+CD2=AD2, ∴∠ACB=∠ACD=90°(6分) ∴AC⊥BC,AC⊥CD, 又BC∩CD=C∴AC⊥平面BCD.(8分) (Ⅲ)由(Ⅰ)知BD⊥平面ACEBD⊂平面ABD ∴平面ACE⊥平面ABD(10分) 平面ACE∩平面ABD=AE, 作CF⊥AE交AE于F,则CF⊥平面ABD,∠CAF就是AC与平面ABD所成的角,(12分) ∴.(14分)
复制答案
考点分析:
相关试题推荐
某运动项目设置了难度不同的甲、乙两个系列,每个系列都有K和D两个动作.比赛时每位运动员自选一个系列完成,两个动作得分之和为该运动员的成绩.假设每个运动员完成每个系列的两个动作的得分是相互独立的.根据赛前训练的统计数据,某运动员完成甲系列和乙系列动作的情况如下表:
表1:甲系列
动作K动作D动作
得分10080401-
概率manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网
表2:乙系列
动作K动作D动作
得分905020
概率manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网
现该运动员最后一个出场,之前其他运动员的最高得分为115分
(Ⅰ)若该运动员希望获得该项目的第一名,应选择哪个系列?说明理由,并求其获得第一名的概率;
(Ⅱ)若该运动员选择乙系列,求其成绩ξ的分布列及其数学期望Eξ.
查看答案
已知向量manfen5.com 满分网manfen5.com 满分网共线,其中A是△ABC的内角.
(1)求角A的大小;
(2)若BC=2,求△ABC面积S的最大值,并判断S取得最大值时△ABC的形状.
查看答案
manfen5.com 满分网如图,圆O是△ABC的外接圆,过点C的切线交AB的延长线于点D,CD=2manfen5.com 满分网,AB=BC=3.AC的长为    查看答案
将参数方程manfen5.com 满分网(θ为参数)化成普通方程为     查看答案
观察下列等式:
(1+x+x21=1+x+x2
(1+x+x22=1+2x+3x2+2x3+x4
(1+x+x23=1+3x+6x2+7x3+6x4+3x5+x6
(1+x+x24=1+4x+10x2+16x3+19x4+16x5+10x6+4x7+x8,…
由以上等式推测:对于n∈N*,若(1+x+x2n=a+a1x+a2x2+…+a2nx2n则a2=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.