满分5 > 高中数学试题 >

某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班...

某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为:( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
由题意知本题是一个古典概型,试验发生包含的所有事件是10位同学参赛演讲的顺序共有A1010;满足条件的事件要得到需要分为三步,根据分步计数原理得到结果,再根据古典概型公式得到结果. 【解析】 由题意知本题是一个古典概型, ∵试验发生包含的所有事件是10位同学参赛演讲的顺序共有:A1010; 满足条件的事件要得到“一班有3位同学恰好被排在一起而二班的2位同学没有被排在一起的演讲的顺序”可通过如下步骤: ①将一班的3位同学“捆绑”在一起,有A33种方法; ②将一班的“一梱”看作一个对象与其它班的5位同学共6个对象排成一列,有A66种方法; ③在以上6个对象所排成一列的7个间隙(包括两端的位置)中选2个位置,将二班的2位同学插入,有A72种方法. 根据分步计数原理(乘法原理),共有A33•A66•A72种方法. ∴一班有3位同学恰好被排在一起(指演讲序号相连), 而二班的2位同学没有被排在一起的概率为:. 故选B.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网=a+a1x+a2x2+a3x3+a4x4,则(a+a2+a42-(a1+a32的值是( )
A.1
B.-1
C.0
D.2
查看答案
如果随机变量ξ~N(μ,σ2),且Eξ=3,Dξ=1,那么P(2<ξ≤4)等于( )(其中N(μ,σ2)在(μ-σ,μ+σ)内的取值概率为0.683;在(μ-2σ,μ+2σ)内的取值概率为0.954;在(μ-3σ,μ+3σ)内的取值概率为0.997)
A.0.5
B.0.683
C.0.954
D.0.997
查看答案
甲、乙两人独立地解同一问题,甲解决这个问题的概率是p1,乙解决这个问题的概率是p2,那么恰好有1人解决这个问题的概率是( )
A.p1p2
B.p1(1-p2)+p2(1-p1
C.1-p1p2
D.1-(1-p1)(1-p2
查看答案
“ab<0”是“方程ax2+by2=c表示双曲线”的( )
A.必要条件但不是充分条件
B.充分条件但不是必要条件
C.充分必要条件
D.既不是充分条件,又不是必要条件
查看答案
已知变量a,b已被赋值,要交换a、b的值,应采用的算法是( )
A.a=b,b=a
B.a=c,b=a,c=b
C.a=c,b=a,c=a
D.c=a,a=b,b=c
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.