已知二次函数f(x)=ax
2+bx+c,不等式f(x)>-2x的解集为(1,3).
(Ⅰ)若方程f(x)+6a=0有两个相等的实根,求f(x)的解析式;
(Ⅱ)若f(x)的最大值为正数,求实数a的取值范围.
考点分析:
相关试题推荐
已知某皮鞋厂一天的生产成本C(元)与生产数量n(双)之间的函数关系是C=4000+50n.
(1)求一天生产1000双皮鞋的成本;
(2)如果某天的生产成本是48000元,那么这一天生产了多少双皮鞋?
(3)若每双皮鞋的售价为90元,且生产的皮鞋全部售出,试写出这一天的利润P关于这一天生产数量n的函数关系式,并求出每天至少生产多少双皮鞋,才能不亏本?
查看答案
计算下列各式:
(1)(2
)
+2
-2•(2
)
--(0.01)
0.5(2)
.
查看答案
设全集为R,A={x|2<x≤5},B={x|3<x<8},C={x|a-1<x<2a}.
(Ⅰ)求A∩B及C
R(A∪B);
(Ⅱ)若(A∩B)∩C=∅,求实数a的取值范围.
查看答案
已知a∈R,函数f(x)=x|x-a|,
(Ⅰ)当a=2时,写出函数y=f(x)的单调递增区间;
(Ⅱ)当a>2时,求函数y=f(x)在区间[1,2]上的最小值;
(Ⅲ)设a≠0,函数f(x)在(m,n)上既有最大值又有最小值,请分别求出m、n的取值范围(用a表示).
查看答案
下列说法:①若f(x)=ax
2+(2a+b)x+2(其中x∈[2a-1,+a+4])是偶函数,则实数b=2;②f(x)=
既是奇函数又是偶函数;③已知f(x)是定义在R上的奇函数,若当x∈[0,+∞]时,f(x)=x(1+x),则当x∈R时,f(x)=x(1+|x|);④已知f(x)是定义在R上的不恒为零的函数,且对任意的x,y∈R都满足f=x•f(y)+y•f(x),则f(x)是奇函数.其中所有正确命题的序号是
.
查看答案