满分5 > 高中数学试题 >

已知椭圆经过点,且两焦点与短轴的一个端点构成等腰直角三角形. (1)求椭圆的方程...

已知椭圆manfen5.com 满分网经过点manfen5.com 满分网,且两焦点与短轴的一个端点构成等腰直角三角形.
(1)求椭圆的方程;
(2)动直线manfen5.com 满分网交椭圆C于A、B两点,试问:在坐标平面上是否存在一个定点T,使得以AB为直径的圆恒过点T.若存在,求出点T的坐标;若不存在,请说明理由.
(1)由题设知,所以,椭圆经过点,代入可得b=1,,由此可知所求椭圆方程为 (2)首先求出动直线过(0,)点.当L与x轴平行时,以AB为直径的圆的方程:;当L与y轴平行时,以AB为直径的圆的方程:x2+y2=1.由.由此入手可求出点T的坐标. 【解析】 (1)∵椭圆的两焦点与短轴的一个端点的连线构成等腰直角三角形, ∴∴ 又∵椭圆经过点,代入可得b=1, ∴,故所求椭圆方程为(3分) (2)首先求出动直线过(0,)点.(5分) 当L与x轴平行时,以AB为直径的圆的方程: 当L与y轴平行时,以AB为直径的圆的方程:x2+y2=1 由 即两圆相切于点(0,1),因此,所求的点T如果存在,只能是(0,1).事实上,点T(0,1)就是所求的点.(7分) 证明如下: 当直线L垂直于x轴时,以AB为直径的圆过点T(0,1) 若直线L不垂直于x轴,可设直线L: 由 记点A(x1,y1)、(9分)== 所以TA⊥TB,即以AB为直径的圆恒过点T(0,1) 所以在坐标平面上存在一个定点T(0,1)满足条件.(12分)
复制答案
考点分析:
相关试题推荐
已知函数f(x)=manfen5.com 满分网x3-manfen5.com 满分网(a+manfen5.com 满分网)x2+x(a∈R,a≠0).
(1)若a>0,则a为何值时,f(x)在点(1,f(1))处切线斜率最大?并求该切线方程;
(2)当a=2时,函数f(x)在区间(k-manfen5.com 满分网,k+manfen5.com 满分网)内不是单调函数,求实数k的取值范围;
(3)若f(x)的图象不经过第四象限,求实数a的取值范围.
查看答案
某厂生产某种产品的年固定成本为250万元,每生产x千件,需另投入成本为C(x),当年产量不足80千件时,manfen5.com 满分网(万元);当年产量不小于80千件时,manfen5.com 满分网(万元).现已知此商品每件售价为500元,且该厂年内生产此商品能全部销售完.
(1)写出年利润L(万元)关于年产量x(千件)的函数解析式;
(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?
查看答案
在平面直角坐标系xOy中,已知⊙M经过点F1(0,-c),F2(0,c),A(manfen5.com 满分网c,0)三点,其中c>0.
(1)求⊙M的标准方程(用含c的式子表示);
(2)已知椭圆manfen5.com 满分网+manfen5.com 满分网=1(a>b>0)(其中a2-b2=c2)的左、右顶点分别为D、B,⊙M与x轴的两个交点分别为A、C,且A点在B点右侧,C点在D点右侧,求椭圆离心率的取值范围.
查看答案
已知向量manfen5.com 满分网,设函数manfen5.com 满分网
(1)求f(x)的最小正周期与单调递减区间
(2)在△ABC中,a、b、c分别是角A、B、C的对边,若f(A)=4,b=1,△ABC的面积为manfen5.com 满分网,求a的值.
查看答案
数列{an}的前n项和为Sn,若a1=2且an+1-2=an
(1)求使不等式Sn<56成立的n的最大值;
(2)是否存在等比数列{bn}满足b1=a1,b2=a3,b3=a9?若存在,则求出数列{bn}的通项公式;若不存在,则说明理由.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.