已知椭圆
经过点
,且两焦点与短轴的一个端点构成等腰直角三角形.
(1)求椭圆的方程;
(2)动直线
交椭圆C于A、B两点,试问:在坐标平面上是否存在一个定点T,使得以AB为直径的圆恒过点T.若存在,求出点T的坐标;若不存在,请说明理由.
考点分析:
相关试题推荐
已知函数f(x)=
x
3-
(a+
)x
2+x(a∈R,a≠0).
(1)若a>0,则a为何值时,f(x)在点(1,f(1))处切线斜率最大?并求该切线方程;
(2)当a=2时,函数f(x)在区间(k-
,k+
)内不是单调函数,求实数k的取值范围;
(3)若f(x)的图象不经过第四象限,求实数a的取值范围.
查看答案
某厂生产某种产品的年固定成本为250万元,每生产x千件,需另投入成本为C(x),当年产量不足80千件时,
(万元);当年产量不小于80千件时,
(万元).现已知此商品每件售价为500元,且该厂年内生产此商品能全部销售完.
(1)写出年利润L(万元)关于年产量x(千件)的函数解析式;
(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?
查看答案
在平面直角坐标系xOy中,已知⊙M经过点F
1(0,-c),F
2(0,c),A(
c,0)三点,其中c>0.
(1)求⊙M的标准方程(用含c的式子表示);
(2)已知椭圆
+
=1(a>b>0)(其中a
2-b
2=c
2)的左、右顶点分别为D、B,⊙M与x轴的两个交点分别为A、C,且A点在B点右侧,C点在D点右侧,求椭圆离心率的取值范围.
查看答案
已知向量
,设函数
.
(1)求f(x)的最小正周期与单调递减区间
(2)在△ABC中,a、b、c分别是角A、B、C的对边,若f(A)=4,b=1,△ABC的面积为
,求a的值.
查看答案
数列{a
n}的前n项和为S
n,若a
1=2且a
n+1-2=a
n.
(1)求使不等式S
n<56成立的n的最大值;
(2)是否存在等比数列{b
n}满足b
1=a
1,b
2=a
3,b
3=a
9?若存在,则求出数列{b
n}的通项公式;若不存在,则说明理由.
查看答案