满分5 > 高中数学试题 >

如图四棱锥P-ABCD中,底面ABCD是平行四边形,PG⊥平面ABCD,垂足为G...

如图四棱锥P-ABCD中,底面ABCD是平行四边形,PG⊥平面ABCD,垂足为G,G在AD上,且PG=4,AG=manfen5.com 满分网GD,BG⊥GC,GB=GC=2,E是BC的中点.
(1)求异面直线GE与PC所成的角的余弦值;
(2)求点D到平面PBG的距离;
(3)若F点是棱PC上一点,且DF⊥GC,求manfen5.com 满分网的值.

manfen5.com 满分网
(1)以G点为原点,GB,GC,GP为x轴、y轴、z轴建立空间直角坐标系,写出要用的点的坐标,写出两条异面直线对应的向量,根据两个向量的所成的角确定异面直线所成的角. (2)计算点到面的距离,需要先做出面的法向量,在法向量与点到面的一个点所成的向量之间的运算,得到结果. (3)设出点的坐标,根据两条线段垂直,得到两个向量的数量积等于0,解出点到坐标,根据向量的模长之比等于线段之比,得到结果. 【解析】 (1)以G点为原点,GB,GC,GP为x轴、y轴、 z轴建立空间直角坐标系,则B(2,0,0),C(0,2,0), P(0,0,4),故E(1,1,0)=(1,1,0),=(0,2,4). cos=, ∴GE与PC所成的余弦值为 (2)平面PBG的单位法向量=(0,±1,0) ∵, ∴点D到平面PBG的距离为|•|= (3)设F(0,y,z),则 ∵, ∴, ∴y=,又,即(0,,z-4)=λ(0,2,-4),∴z=1, 故F(0,,1),,, ∴=3.
复制答案
考点分析:
相关试题推荐
在四棱锥P-ABCD中,底面ABCD为矩形,侧棱PA⊥底面ABCD,AB=manfen5.com 满分网,BC=1,PA=2,E为PD的中点.
(1)在侧面PAB内找一点N,使NE⊥面PAC,并求出N点到AB和AP的距离;
(2)求(1)中的点N到平面PAC的距离.

manfen5.com 满分网 查看答案
如图所示,已知在矩形ABCD中,AB=1,BC=a(a>0),PA⊥平面ABCD,且PA=1.
(I)问当实数a在什么范围时,BC边上能存在点Q,使得PQ⊥QD?
(II)当BC边上有且仅有一个点Q使得PQ⊥OD时,求二面角Q-PD-A的余弦值大小.

manfen5.com 满分网 查看答案
如图,多面体是由底面为ABCD的长方体被截面AEFG所截而得,其中AB=4,BC=1,BE=3,CF=4.
(1)求manfen5.com 满分网和点G的坐标;
(2)求GE与平面ABCD所成的角的正弦值;
(3)求点C到截面AEFG的距离.

manfen5.com 满分网 查看答案
在长方体ABCD-A1B1C1D1中,已知AB=4,AD=3,AA1=2.E、F分别是线段AB、BC上的点,且EB=FB=1.
( I) 求二面角C-DE-C1的正切值; ( II) 求直线EC1与FD1所成的余弦值.
查看答案
如图,直三棱柱ABC-A1B1C1,底面△ABC中,CA=CB=1,BCA=90°,棱AA1=2,M、N分别是A1B1、A1A的中点.
(1)求manfen5.com 满分网的长;
(2)求manfen5.com 满分网manfen5.com 满分网>的值;
(3)求证A1B⊥C1M.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.