满分5 > 高中数学试题 >

有编号为A1,A2,…A10的10个零件,测量其直径(单位:cm),得到下面数据...

有编号为A1,A2,…A10的10个零件,测量其直径(单位:cm),得到下面数据:
编号A1A2A3A4A5A6A7A8A9A10
直径1.511.491.491.511.491.511.471.461.531.47
其中直径在区间[1.48,1.52]内的零件为一等品.
(Ⅰ)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率;
(Ⅱ)从一等品零件中,随机抽取2个.
(ⅰ)用零件的编号列出所有可能的抽取结果;
(ⅱ)求这2个零件直径相等的概率.
(1)考查古典概型用列举法计算随机事件所含的基本事件数,从10个零件中随机抽取一个共有10种不同的结果,而符合条件的由所给数据可知,一等品零件共有6个,由古典概型公式得到结果. (2)(i)从一等品零件中,随机抽取2个,一等品零件的编号为A1,A2,A3,A4,A5,A6.从这6个一等品零件中随机抽取2个,所有可能的结果有15种. (ii)从一等品零件中,随机抽取的2个零件直径相等记为事件B,列举出B的所有可能结果有:{A1,A4},{A1,A6},{A4,A6},{A2,A3},{A2,A5},{A3,A5},共有6种.根据古典概型公式得到结果. (Ⅰ)【解析】 由所给数据可知,一等品零件共有6个. 设“从10个零件中,随机抽取一个为一等品”为事件A,则P(A)==; (Ⅱ)(i)一等品零件的编号为A1,A2,A3,A4,A5,A6. 从这6个一等品零件中随机抽取2个, 所有可能的结果有:{A1,A2},{A1,A3},{A1,A4},{A1,A5}, {A1,A6},{A2,A3},{A2,A4},{A2,A5},{A2,A6},{A3,A4}, {A3,A5},{A3,A6},{A4,A5},{A4,A6},{A5,A6}共有15种. (ii)“从一等品零件中,随机抽取的2个零件直径相等”记为事件B B的所有可能结果有:{A1,A4},{A1,A6},{A4,A6}, {A2,A3},{A2,A5},{A3,A5},共有6种. ∴P(B)=.
复制答案
考点分析:
相关试题推荐
已知函数y=manfen5.com 满分网,输入自变量的值,输出对应的函数值.
(1)画出算法框图.(2)写出程序语句.
查看答案
已知函数f(x)=2sin(π-x)cosx.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在区间manfen5.com 满分网上的最大值和最小值.
查看答案
如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD=AC=1,O为AC中点,PO⊥平面ABCD,PO=2,M为PD中点.
(Ⅰ)证明:PB∥平面ACM;
(Ⅱ)证明:AD⊥平面PAC;
(Ⅲ)求直线AM与平面ABCD所成角的正切值.

manfen5.com 满分网 查看答案
为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行分层抽样检查,测得身高情况的统计图如下:
manfen5.com 满分网
(Ⅰ)估计该校男生的人数;
(Ⅱ)估计该校学生身高在170~185cm之间的概率.
查看答案
设函数manfen5.com 满分网,有下列结论:
①点manfen5.com 满分网是函数f(x)图象的一个对称中心;
②直线manfen5.com 满分网是函数f(x)图象的一条对称轴;
③函数f(x)的最小正周期是π;
④将函数f(x)的图象向右平移manfen5.com 满分网个单位后,对应的函数是偶函数.
其中所有正确结论的序号是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.