满分5 > 高中数学试题 >

若函数f(x)=ax-x-a(a>0且a≠1)有两个零点,则实数a的取值范围是(...

若函数f(x)=ax-x-a(a>0且a≠1)有两个零点,则实数a的取值范围是( )
A.{a|a>1}
B.{a|a≥2}
C.{a|0<a<1}
D.{a|1<a<2}
由题意可得函数y=ax(a>0,且a≠1)与函数y=x+a的图象有两个交点,当0<a<1时两函数只有一个交点,不符合条件; 当a>1时,因为函数y=ax(a>1)的图象过点(0,1), 而直线y=x+a所过的点(0,a)一定在点(0,1)的上方,由此求得实数a的取值范围. 【解析】 设函数y=ax(a>0,且a≠1)和函数y=x+a,则函数f(x)=ax-x-a(a>0且a≠1)有两个零点, 就是函数y=ax(a>0,且a≠1)与函数y=x+a的图象有两个交点,由图象可知当0<a<1时两函数只有一个交点,不符合条件. 当a>1时,因为函数y=ax(a>1)的图象过点(0,1),而直线y=x+a所过的点(0,a),此点一定在点(0,1)的上方,所以一定有两个交点. 所以实数a的取值范围是{a|a>1}. 故选A.
复制答案
考点分析:
相关试题推荐
方程lgx-x=0根的个数为( )
A.无穷多manfen5.com 满分网
B.3
C.1
D.0
查看答案
若函数y=f(x)在区间[a,b]上的图象为连续不断的一条曲线,则下列说法正确的是( )
A.若f(a)f(b)>0,不存在实数c∈(a,b)使得f(c)=0;
B.若f(a)f(b)<0,存在且只存在一个实数c∈(a,b)使得f(c)=0;
C.若f(a)f(b)>0,有可能存在实数c∈(a,b)使得f(c)=0;
D.若f(a)f(b)<0,有可能不存在实数c∈(a,b)使得f(c)=0;
查看答案
设函数f(x)=(x2+ax+b)ex(x∈R).
(1)若a=2,b=-2,求函数f(x)的极值;
(2)若x=1是函数f(x)的一个极值点,试求出a关于b的关系式(即用a表示b),并确定f(x)的单调区间;(提示:应注意对a的取值范围进行讨论)
(3)在(2)的条件下,设a>0,函数g(x)=(a2+14)ex+4.若存在ξ1,ξ2∈[0,4]使得|f(ξ1)-g(ξ2)|<1成立,求a的取值范围.
查看答案
如图,直角三角形ABC中,∠B=90°,AB=1,BC=manfen5.com 满分网.点M,N分别在边AB和AC 上(M点和B点不重合),将△AMN沿MN翻折,△AMN变为△A′MN,使顶点A′落在边BC上(A′点和B点不重合).设∠AMN=θ.
(1)用θ表示∠BA′M和线段AM的长度,并写出θ的取值范围;
(2)求线段AN长度的最小值.

manfen5.com 满分网 查看答案
数列{an}的前n项和Sn满足Sn-Sn-1=manfen5.com 满分网+manfen5.com 满分网(n≥2),a1=1.
(1)证明:数列manfen5.com 满分网是等差数列.并求数列{an}的通项公式;
(2)若manfen5.com 满分网,Tn=b1+b2+…+bn,求证:manfen5.com 满分网
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.