满分5 > 高中数学试题 >

设数列{an}的前n项和为Sn,且 Sn=n2-4n+4. (1)求数列{an}...

设数列{an}的前n项和为Sn,且 Sn=n2-4n+4.
(1)求数列{an}的通项公式;
(2)设manfen5.com 满分网,数列{bn}的前n项和为Tn,求证:manfen5.com 满分网
(1)根据an=Sn-Sn-1求通项公式,然后验证a1=S1=1,不符合上式,因此数列{an}是分段数列; (2)先写出数列{bn}的通项公式,应用错位相减法,求出Tn. 【解析】 (1)当n=1时,a1=S1=1. 当n≥2时,an=Sn-Sn-1=n2-4n+4-[(n-1)2-4(n-1)+4]=2n-5 ∵a1=1不适合上式, ∴ (2)证明:∵. 当n=1时,, 当n≥2时,,①.② ①-②得:= 得, 此式当n=1时也适合. ∴N*). ∵, ∴Tn<1. 当n≥2时,, ∴Tn<Tn+1(n≥2). ∵, ∴T2<T1. 故Tn≥T2,即. 综上,.
复制答案
考点分析:
相关试题推荐
为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=manfen5.com 满分网,若不建隔热层,每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和.
(Ⅰ)求k的值及f(x)的表达式.
(Ⅱ)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.
查看答案
在△ABC中,a,b,c分别是角A、B、C的对边,manfen5.com 满分网=(b,2a-c),manfen5.com 满分网=(cosB,cosC),且manfen5.com 满分网manfen5.com 满分网
(1)求角B的大小;
(2)设f(x)=cos(ωx-manfen5.com 满分网)+sinx(ω>0),且f(x)的最小正周期为π,求f(x)在区间[0,manfen5.com 满分网]上的最大值和最小值.
查看答案
在数列{an}中,若a1=2,且对任意的正整数p,q都有ap+q=apaq,则a8的值为    查看答案
若偶函数f(x)满足f(x)=2x-4(x≥0),则当x<0时f(x)<0的解集是    查看答案
若双曲线的渐近线方程为manfen5.com 满分网,则双曲线的离心率为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.