已知曲线C的极坐标方程是ρ=1,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为
为参数).
(1)写出直线l与曲线C的直角坐标方程;
(2)设曲线C经过伸缩变换
得到曲线C′,设曲线C′上任一点为M(x,y),求
的最小值.
考点分析:
相关试题推荐
选修4-1:几何证明选讲
如图所示,PA为⊙O的切线,A为切点,PBC是过点O的割线,PA=10,PB=5,∠BAC的平分
线与BC和⊙O分别交于点D和E.
( I)求证:
;
( II)求AD•AE的值.
查看答案
已知函数
,其中a>0.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若直线x-y-1=0是曲线y=f(x)的切线,求实数a的值;
(Ⅲ)设g(x)=xlnx-x
2f(x),求g(x)在区间[1,e]上的最大值.(其中e为自然对数的底数)
查看答案
已知椭圆
的长轴为4,且点
在该椭圆上.
(I)求椭圆的方程;
(II)过椭圆右焦点的直线l交椭圆于A,B两点,若以AB为直径的圆径的圆经过原点,求直线l的方程.
查看答案
设数列{a
n}的前n项和为S
n,且 S
n=n
2-4n+4.
(1)求数列{a
n}的通项公式;
(2)设
,数列{b
n}的前n项和为T
n,求证:
.
查看答案
为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=
,若不建隔热层,每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和.
(Ⅰ)求k的值及f(x)的表达式.
(Ⅱ)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.
查看答案