本题考查的是数列求和问题.在解答时:
(Ⅰ)此问首先要结合所给列表充分讨论符合要求的所有情况,根据符合的情况进一步分析公比进而求得数列{an}的通项公式;
(Ⅱ)首先要利用第(Ⅰ)问的结果对数列数列{bn}的通项进行化简,然后结合通项的特点,利用分组法进行数列{bn}的前2n项和的求解.
【解析】
(Ⅰ)当a1=3时,不符合题意;
当a1=2时,当且仅当a2=6,a3=18时符合题意;
当a1=10时,不符合题意;
所以a1=2,a2=6,a3=18,
∴公比为q=3,
故:an=2•3n-1,n∈N*.
(Ⅱ)∵bn=an+(-1)nlnan
=2•3n-1+(-1)nln(2•3n-1)
=2•3n-1+(-1)n[ln2+(n-1)ln3]
=2•3n-1+(-1)n(ln2-ln3)+(-1)nnln3
∴S2n=b1+b2+…+b2n
=2(1+3+…+32n-1)+[-1+1-1+…+(-1)2n]•(ln2-ln3)+[-1+2-3+…+(-1)2n2n]ln3
=
=32n+nln3-1
∴数列{bn}的前2n项和S2n=32n+nln3-1.