满分5 > 高中数学试题 >

线段AB在平面α内,则直线AB与平面α的位置关系是( ) A.AB⊂α B.AB...

线段AB在平面α内,则直线AB与平面α的位置关系是( )
A.AB⊂α
B.AB⊄α
C.由线段AB的长短而定
D.以上都不对
线段AB在平面α内,则直线AB上所有的点都在平面α内,从而即可判断直线AB与平面α的位置关系. 【解析】 ∵线段AB在平面α内, ∴直线AB上所有的点都在平面α内, ∴直线AB与平面α的位置关系: 直线在平面α内,用符号表示为:AB⊂α 故选A.
复制答案
考点分析:
相关试题推荐
(附加题)
(1)设集合A={1,2,3,…,10},求集合A的所有非空子集元素和的和.
(2)在区间[2,3]上,方程log2log3x=log3log2x的实根的个数共有______ 个.
查看答案
已知f(x)定义域为R,满足:
①f(1)=1>f(-1);
②对任意实数x,y,有f(y-x+1)=f(x)f(y)+f(x-1)f(y-1).
(Ⅰ)求f(0),f(3)的值;
(Ⅱ)求manfen5.com 满分网的值;
(Ⅲ)是否存在常数A,B,使得不等式|f(x)+f(2-x)+Ax+B|≤2对一切实数x成立.如果存在,求出常数A,B的值;如果不存在,请说明理由.
查看答案
已知幂函数manfen5.com 满分网(p∈N)在(0,+∞)上是增函数,且在定义域上是偶函数.
(1)求p的值,并写出相应的f(x)的解析式;
(2)对于(1)中求得的函数f(x),设函数g(x)=-qf[f(x)]+(2q-1)f(x)+1,问:是否存在实数q(q<0),使得g(x)在区间(-∞,-4]上是减函数,且在区间(-4,0)(10)上是增函数?若存在,请求出来;若不存在,请说明理由.
查看答案
已知函数manfen5.com 满分网(其中a>0且a≠1,a为实数常数).
(1)若f(x)=2,求x的值(用a表示);
(2)若a>1,且atf(2t)+mf(t)≥0对于t∈[1,2]恒成立,求实数m的取值范围(用a表示).
查看答案
某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿场售价与上市时间的关系如图一的一条折线表示;西红柿的种植成本与上市时间的关系如图二的抛物线段表示.
(1)写出图一表示的市场售价与时间的函数关系式p=f(t);写出图二表示的种植成本与时间的函数关系式Q=g(t);
(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿纯收益最大?(注:市场售价各种植成本的单位:元/102㎏,时间单位:天)
manfen5.com 满分网
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.