满分5 > 高中数学试题 >

已知函数f(x)=lnx, (I)若a=-2时,函数h(x)=f(x)-g(x)...

已知函数f(x)=lnx,manfen5.com 满分网
(I)若a=-2时,函数h(x)=f(x)-g(x)在其定义域内是增函数,求b的取值范围;
(Ⅱ)在(I)的结论下,设φ(x)=e2x+bex,x∈[0,ln2],求函数φ(x)的最小值;
(Ⅲ)设函数f(x)的图象C1与函数g(x)的图象C2交于点P、Q,过线段PQ的中点R作x轴的垂线分别交C1、C2于点M、N,问是否存在点R,使C1在M处的切线与C2在N处的切线平行?若存在,求出R的横坐标;若不存在,请说明理由.
(I)根据a=-2时,函数h(x)=f(x)-g(x)在其定义域内是增函数,知道h′(x)在其定义域内大于等于零,得到一个关于b的不等式,解此不等式即得b的取值范围; (II)先设t=ex,将原函数化为关于t的二次函数,最后将原函数φ(x)的最小值问题转化成二次函数在某区间上的最值问题即可; (III)先假设存在点R,使C1在M处的切线与C2在N处的切线平行,利用导数的几何意义求出切线的斜率进而得出切线的方程,后利用斜率相等求出R的横坐标,如出现矛盾,则不存在;若不出现矛盾,则存在. 【解析】 (I)依题意:h(x)=lnx+x2-bx. ∵h(x)在(0,+∞)上是增函数, ∴对x∈(0,+∞)恒成立, ∴,∵x>0,则. ∴b的取值范围是. (II)设t=ex,则函数化为y=t2+bt,t∈[1,2]. ∵. ∴当,即时,函数y在[1,2]上为增函数, 当t=1时,ymin=b+1;当1<-<2,即-4<b<-2时,当t=-时,; ,即b≤-4时,函数y在[1,2]上是减函数, 当t=2时,ymin=4+2b. 综上所述: (III)设点P、Q的坐标是(x1,y1),(x2,y2),且0<x1<x2. 则点M、N的横坐标为. C1在点M处的切线斜率为. C2在点N处的切线斜率为. 假设C1在点M处的切线与C2在点N处的切线平行,则k1=k2. 即.则 =, ∴设,则,(1) 令,则, ∵u>1,∴r′(u)>0, 所以r(u)在[1,+∞)上单调递增, 故r(u)>r(1)=0,则,与(1)矛盾!
复制答案
考点分析:
相关试题推荐
(理科)已知数列{an}的前n项和Sn满足manfen5.com 满分网
(1)求数列{an}的通项公式;
(2)记manfen5.com 满分网,若数列{bn}为等比数列,求a的值;
(3)在满足(2)的条件下,记manfen5.com 满分网,设数列{Cn}的前n项和为Tn,求证:manfen5.com 满分网
查看答案
某机床厂今年初用98万元购进一台数控机床,并立即投入使用,计划第一年维修、保养费用12万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x年后数控机床的盈利总额y元.
(1)写出y与x之间的函数关系式;
(2)从第几年开始,该机床开始盈利?
(3)使用若干年后,对机床的处理有两种方案:①当年平均盈利额达到最大值时,以30万元价格处理该机床;②当盈利额达到最大值时,以12万元价格处理该机床.问哪种方案处理较为合理?请说明理由.
查看答案
已知梯形ABCD中,AD∥BC,∠ABC=∠BAD=manfen5.com 满分网,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE=x,G是BC的中点.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF (如图).
(1)当x=2时,求证:BD⊥EG;
(2)若以F、B、C、D为顶点的三棱锥的体积记为f(x),求f(x)的最大值;
(3)当f(x)取得最大值时,求二面角D-BF-C的余弦值.

manfen5.com 满分网 manfen5.com 满分网 查看答案
一个盒子装有六张卡片,上面分别写着如下六个定义域为R的函数:f1(x)=x,f2(x)=x2,f3(x)=x3,f4(x)=sinx,f5(x)=cosx,f6(x)=2.
(1)现从盒子中任取两张卡片,将卡片上的函数相加得一个新函数,求所得函数是奇函数的概率;
(2)现从盒子中进行逐一抽取卡片,且每次取出后均不放回,若取到一张记有偶函数的卡片则停止抽取,否则继续进行,求抽取次数ξ的分布列和数学期望.
查看答案
已知△ABC中,A,B,C成等差数列,向量manfen5.com 满分网,向量manfen5.com 满分网,求:manfen5.com 满分网的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.