满分5 >
高中数学试题 >
“”是“tanx=1”成立的( ) A.充分不必要条件 B.必要不充分条件 C....
“
”是“tanx=1”成立的( )
A.充分不必要条件
B.必要不充分条件
C.充分条件
D.既不充分也不必要条件
考点分析:
相关试题推荐
已知函数f(x)=lnx,
(I)若a=-2时,函数h(x)=f(x)-g(x)在其定义域内是增函数,求b的取值范围;
(Ⅱ)在(I)的结论下,设φ(x)=e
2x+be
x,x∈[0,ln2],求函数φ(x)的最小值;
(Ⅲ)设函数f(x)的图象C
1与函数g(x)的图象C
2交于点P、Q,过线段PQ的中点R作x轴的垂线分别交C
1、C
2于点M、N,问是否存在点R,使C
1在M处的切线与C
2在N处的切线平行?若存在,求出R的横坐标;若不存在,请说明理由.
查看答案
(理科)已知数列{a
n}的前n项和S
n满足
.
(1)求数列{a
n}的通项公式;
(2)记
,若数列{b
n}为等比数列,求a的值;
(3)在满足(2)的条件下,记
,设数列{C
n}的前n项和为T
n,求证:
.
查看答案
某机床厂今年初用98万元购进一台数控机床,并立即投入使用,计划第一年维修、保养费用12万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x年后数控机床的盈利总额y元.
(1)写出y与x之间的函数关系式;
(2)从第几年开始,该机床开始盈利?
(3)使用若干年后,对机床的处理有两种方案:①当年平均盈利额达到最大值时,以30万元价格处理该机床;②当盈利额达到最大值时,以12万元价格处理该机床.问哪种方案处理较为合理?请说明理由.
查看答案
已知梯形ABCD中,AD∥BC,∠ABC=∠BAD=
,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE=x,G是BC的中点.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF (如图).
(1)当x=2时,求证:BD⊥EG;
(2)若以F、B、C、D为顶点的三棱锥的体积记为f(x),求f(x)的最大值;
(3)当f(x)取得最大值时,求二面角D-BF-C的余弦值.
查看答案
一个盒子装有六张卡片,上面分别写着如下六个定义域为R的函数:f
1(x)=x,f
2(x)=x
2,f
3(x)=x
3,f
4(x)=sinx,f
5(x)=cosx,f
6(x)=2.
(1)现从盒子中任取两张卡片,将卡片上的函数相加得一个新函数,求所得函数是奇函数的概率;
(2)现从盒子中进行逐一抽取卡片,且每次取出后均不放回,若取到一张记有偶函数的卡片则停止抽取,否则继续进行,求抽取次数ξ的分布列和数学期望.
查看答案