满分5 > 高中数学试题 >

已知椭圆经过点,且两焦点与短轴的一个端点构成等腰直角三角形. (1)求椭圆的方程...

已知椭圆manfen5.com 满分网经过点manfen5.com 满分网,且两焦点与短轴的一个端点构成等腰直角三角形.
(1)求椭圆的方程;
(2)动直线manfen5.com 满分网交椭圆C于A、B两点,试问:在坐标平面上是否存在一个定点T,使得以AB为直径的圆恒过点T.若存在,求出点T的坐标;若不存在,请说明理由.
(1)由题设知,所以,椭圆经过点,代入可得b=1,,由此可知所求椭圆方程为 (2)首先求出动直线过(0,)点.当L与x轴平行时,以AB为直径的圆的方程:;当L与y轴平行时,以AB为直径的圆的方程:x2+y2=1.由.由此入手可求出点T的坐标. 【解析】 (1)∵椭圆的两焦点与短轴的一个端点的连线构成等腰直角三角形, ∴∴ 又∵椭圆经过点,代入可得b=1, ∴,故所求椭圆方程为(3分) (2)首先求出动直线过(0,)点.(5分) 当L与x轴平行时,以AB为直径的圆的方程: 当L与y轴平行时,以AB为直径的圆的方程:x2+y2=1 由 即两圆相切于点(0,1),因此,所求的点T如果存在,只能是(0,1).事实上,点T(0,1)就是所求的点.(7分) 证明如下: 当直线L垂直于x轴时,以AB为直径的圆过点T(0,1) 若直线L不垂直于x轴,可设直线L: 由 记点A(x1,y1)、(9分)== 所以TA⊥TB,即以AB为直径的圆恒过点T(0,1) 所以在坐标平面上存在一个定点T(0,1)满足条件.(12分)
复制答案
考点分析:
相关试题推荐
一个四棱锥P一ABCD的正视图是边长为2的正方形及其一条对角线,侧视图和俯视图全全等的等腰直角三角形,直角边长为2,直观图如图.
(1)求四棱锥P一ABCD的体积:
(2)求二面角C-PB-A大小;
(3)M为棱PB上的点,当PM长为何值时,CM⊥PA?

manfen5.com 满分网 查看答案
已知数列{an}是首项为a1=manfen5.com 满分网,公比q=manfen5.com 满分网的等比数列,设manfen5.com 满分网(n∈N*),数列{cn}满足cn=an•bn
(1)求证:{bn}是等差数列;
(2)求数列{cn}的前n项和Sn
查看答案
设△ABC的内角A、B、C的对边分别为a、b、c,且A=manfen5.com 满分网,a=2bcosC,求:
(Ⅰ)角B的值;
(Ⅱ)函数f(x)=sin2x+cos(2x-B)在区间manfen5.com 满分网上的最大值及对应的x值.
查看答案
已知正方形ABCD边长为1,图形如示,点E为边BC的中点,正方形内部一动点P满足:P到线段AD的距离等于P到点E的距离,那么P点的轨迹与正方形的上、下底边及BC边所围成平面图形的面积为   
manfen5.com 满分网 查看答案
不等式(a-3)x2<(4a-2)x对a∈(0,1)恒成立,则x的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.