已知直线l的参数方程是
(t是参数),圆C的极坐标方程为
.
(I)求圆心C的直角坐标;
(II)由直线l上的点向圆C引切线,求切线长的最小值.
考点分析:
相关试题推荐
如图,AB、CD是圆的两条平行弦,BE∥AC,BE交CD于E、交圆于F,过A点的切线交DC的延长线于P,PC=ED=1,PA=2.
(I)求AC的长;
(II)求证:BE=EF.
查看答案
已知函数f(x)是定义在[-e,0)∪(0,e]上的奇函数,当x∈(0,e]时,f(x)=ax+lnx(其中e是自然界对数的底,a∈R)
(1)求f(x)的解析式;
(2)设
,求证:当a=-1时,
;
(3)是否存在实数a,使得当x∈[-e,0)时,f(x)的最小值是3?如果存在,求出实数a的值;如果不存在,请说明理由.
查看答案
已知椭圆
经过点
,且两焦点与短轴的一个端点构成等腰直角三角形.
(1)求椭圆的方程;
(2)动直线
交椭圆C于A、B两点,试问:在坐标平面上是否存在一个定点T,使得以AB为直径的圆恒过点T.若存在,求出点T的坐标;若不存在,请说明理由.
查看答案
一个四棱锥P一ABCD的正视图是边长为2的正方形及其一条对角线,侧视图和俯视图全全等的等腰直角三角形,直角边长为2,直观图如图.
(1)求四棱锥P一ABCD的体积:
(2)求二面角C-PB-A大小;
(3)M为棱PB上的点,当PM长为何值时,CM⊥PA?
查看答案
已知数列{a
n}是首项为a
1=
,公比q=
的等比数列,设
(n∈N*),数列{c
n}满足c
n=a
n•b
n
(1)求证:{b
n}是等差数列;
(2)求数列{c
n}的前n项和S
n.
查看答案