满分5 > 高中数学试题 >

如图所示,PA⊥矩形ABCD所在的平面,M、N分别是AB、PC的中点, (1)求...

manfen5.com 满分网如图所示,PA⊥矩形ABCD所在的平面,M、N分别是AB、PC的中点,
(1)求证:MN∥平面PAD;
(2)求证:MN⊥CD;
(3)若∠PDA=45°,求证:平面BMN⊥平面PCD.
(1)取PD 的中点E,连接AE、EN,根据三角形中位线的性质,我们可得四边形AMNE为平行四边形,即MN∥AE,进而根据线面平行的判定定理得到MN∥平面PAD. (2)由已知中PA⊥矩形ABCD所在的平面,根据线面垂直的性质及矩形的性质,可得PA⊥AB,AD⊥AB,由线面垂直的判定定理得AB⊥平面PAD,结合线面垂直的判定定理及性质,即可得到MN⊥CD; (3)由已知中PA⊥矩形ABCD所在的平面,∠PDA=45°,E 是PD 的中点,可得MN⊥PD,MN⊥CD,由线面线面垂直的判定定理得MN⊥平面PCD,再由面面垂直的判定定理可得面BMN⊥平面PCD. 证明:(1)如图所示,取PD 的中点E,连接AE、EN, 则有EN===AM,EN∥CD∥AB∥AM, 故AMNE 是平行四边形, ∴MN∥AE, ∵AE⊂平面PAD,MN⊄平面PAD, ∴MN∥平面PAD. (2)∵PA⊥平面ABCD, ∴PA⊥AB,又AD⊥AB, ∴AB⊥平面PAD, ∴AB⊥AE,即AB⊥MN, 又CD∥AB, ∴MN⊥CD. (3)∵PA⊥平面ABCD, ∴PA⊥AD,又∠PDA=45°,E 是PD 的中点, ∴AE⊥PD,即MN⊥PD, 又MN⊥CD, ∴MN⊥平面PCD, ∵MN⊂平面BMN ∴平面BMN⊥平面PCD.
复制答案
考点分析:
相关试题推荐
如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AA1=4,AB=5,点D是AB的中点.
(1)求证:AC⊥BC1
( 2)求证:AC1∥平面CDB1

manfen5.com 满分网 查看答案
已知在三棱锥S-ABC中,∠ACB=90°,又SA⊥平面ABC,AD⊥SC于D,求证:AD⊥平面SBC.

manfen5.com 满分网 查看答案
如图,∠BAD=90°的等腰直角三角形ABD与正三角形CBD所在平面互相垂直,E是BC的中点,则AE与平面BCD所成角的大小为   
manfen5.com 满分网 查看答案
正四棱锥S-ABCD的侧棱长为manfen5.com 满分网,底面边长为manfen5.com 满分网,E为SA的中点,则异面直线BE与SC所成的角为:    查看答案
一个半球的全面积为Q,一个圆柱与此半球等底等体积,则这个圆柱的全面积是     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.