满分5 > 高中数学试题 >

设M是圆x2+y2-6x-8y=0上的动点,O是原点,N是射线OM上的点,若|O...

设M是圆x2+y2-6x-8y=0上的动点,O是原点,N是射线OM上的点,若|OM|•|ON|=150,求点N的轨迹方程.
先设M、N的坐标分别为(x1,y1),(x,y),欲求出动点N的轨迹方程,只须求出x,y的关系式即可,结合|OM|•|ON|=150关系式,用坐标来表示距离,利用直线的斜率与坐标的关系即可求得点N的轨迹方程. 【解析】 设M、N的坐标分别为(x1,y1),(x,y), 由题设|OM|•|ON|=150,得 , 当x1≠0,x≠0时,∵N是射线OM上的点, ∴有 ,设 =k, 有y=kx,y1=kx1,则原方程为x12+k2x12-6x1-8kx1=0, 由于x≠0,所以(1+k2)x1=6+8k, 又|x1x|(1+k2)=150,因为x与x1同号, 所以x1=,代入上式得 =6+8k, 因为k=,所以 =6+8 , 化简可得:3x+4y-75=0为所求.
复制答案
考点分析:
相关试题推荐
某营养师要求为某个儿童预订午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物,6个单位的蛋白质和6个单位的维生素C;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营状中至少含64个单位的碳水化合物和42个单位的蛋白质和54个单位的维生素C.如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?
查看答案
已知圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3:1;③圆心到直线l:x-2y=0的距离为manfen5.com 满分网.求该圆的方程.
查看答案
椭圆的中心在原点,焦点在x轴上,焦距为2,且经过点A (-1,manfen5.com 满分网);
(1)求满足条件的椭圆方程;
(2)求该椭圆的顶点坐标,长轴长,短轴长,离心率.
查看答案
已知直线l1的方程为3x+4y-12=0.
(1)若直线l2与l1平行,且过点(-1,3),求直线l2的方程;
(2)若直线l2与l1垂直,且l2与两坐标轴围成的三角形面积为4,求直线l2的方程.
查看答案
设m>1,在约束条件manfen5.com 满分网 下,目标函数z=x+5y的最大值为4,则m的值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.