满分5 > 高中数学试题 >

已知函数. (1)当时,如果函数g(x)=f(x)-k仅有一个零点,求实数k的取...

已知函数manfen5.com 满分网
(1)当manfen5.com 满分网时,如果函数g(x)=f(x)-k仅有一个零点,求实数k的取值范围;
(2)当a=2时,试比较f(x)与1的大小;
(3)求证:manfen5.com 满分网(n∈N*).
(1)利用函数f(x)的导数求出它的单调区间和极值,由题意知 k大于f(x)的极大值,或 k小于f(x)的极小值. (2)令h(x)=f(x)-1,由h′(x)>0得h(x)在(0,+∞)上是增函数,利用h(1)=0,分x>1、 0<x<1、当x=1三种情况进行讨论. (3)根据(2)的结论,当x>1时,,令,有,可得 ,由 ,证得结论. 【解析】 (1)当时,,定义域是(0,+∞),  求得,令f'(x)=0,得,或x=2. ∵当或x>2时,f'(x)>0; 当时,f'(x)<0, ∴函数f(x)在(0,]、(2,+∞)上单调递增,在上单调递减. ∴f(x)的极大值是 ,极小值是 . ∵当x趋于 0时,f(x)趋于-∞;当x趋于+∞时,f(x)趋于+∞, 由于当g(x)仅有一个零点时,函数f(x)的图象和直线y=k仅有一个交点, k的取值范围是{k|k>3-ln2,或}. (2)当a=2时,,定义域为(0,+∞). 令,∵, ∴h(x)在(0,+∞)上是增函数.  ①当x>1时,h(x)>h(1)=0,即f(x)>1; ②当0<x<1时,h(x)<h(1)=0,即f(x)<1;  ③当x=1时,h(x)=h(1)=0,即f(x)=1. (3)证明:根据(2)的结论,当x>1时,,即. 令,则有,∴. ∵,∴.
复制答案
考点分析:
相关试题推荐
已知点F是椭圆manfen5.com 满分网右焦点,点M(m,0)、N(0,n)分别是x轴、y轴上的动点,且满足manfen5.com 满分网,若点P满足manfen5.com 满分网
(1)求P点的轨迹C的方程;
(2)设过点F任作一直线与点P的轨迹C交于A、B两点,直线OA、OB与直线x=-a分别交于点S、T(其中O为坐标原点),试判断manfen5.com 满分网是否为定值?若是,求出这个定值;若不是,请说明理由.
查看答案
数列{an}的首项a1=1,前n项和Sn与an之间满足an=manfen5.com 满分网(n≥2).
(1)求证:数列{manfen5.com 满分网}的通项公式;
(2)设存在正数k,使(1+S1)(1+S2)..(1+Snmanfen5.com 满分网对一切n∈N×都成立,求k的最大值.
查看答案
已知在四棱锥P-ABCD中,底面ABCD是边长为4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E、F、G分别是PA、PB、BC的中点.
(I)求证:EF⊥平面PAD;
(II)求平面EFG与平面ABCD所成锐二面角的大小.

manfen5.com 满分网 查看答案
一袋子中有大小、质量均相同的10个小球,其中标记“开”字的小球有5个,标记“心”字的小球有3个,标记“乐”字的小球有2个.从中任意摸出1个球确定标记后放回袋中,再从中任取1个球.不断重复以上操作,最多取3次,并规定若取出“乐”字球,则停止摸球.
求:(Ⅰ)恰好摸到2个“心”字球的概率;
(Ⅱ)摸球次数X的概率分布列和数学期望.
查看答案
在△ABC中,a,b,c分别是三内角A,B,C所对应的三边,已知b2+c2=a2+bc
(1)求角A的大小;
(2)若manfen5.com 满分网,试判断△ABC的形状.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.