满分5 > 高中数学试题 >

已知函数f(x)=(2-a)lnx++2ax(a∈R). (Ⅰ)当a=0时,求f...

已知函数f(x)=(2-a)lnx+manfen5.com 满分网+2ax(a∈R).
(Ⅰ)当a=0时,求f(x)的极值;
(Ⅱ)当a<0时,求f(x)单调区间;
(Ⅲ)若对任意a∈(-3,-2)及x1,x2∈[1,3],恒有(m+ln3)a-2ln3>|f(x1)-f(x2)|成立,求实数m的取值范围.
(Ⅰ)当a=0时,f(x)=2lnx+,求导,令f′(x)=0,解方程,分析导数的变化情况,确定函数的极值; (Ⅱ)当a<0时,求导,对导数因式分解,比较两根的大小,确定函数f(x)单调区间; (Ⅲ)若对任意a∈(-3,-2)及x1,x2∈[1,3],恒有(m+ln3)a-2ln3>|f(x1)-f(x2)|成立,求函数f(x)的最大值和最小值,解不等式,可求实数m的取值范围. 【解析】 (Ⅰ)依题意知f(x)的定义域为(0,+∞) 当a=0时,f(x)=2lnx+,f′(x)=-= 令f′(x)=0,解得x=当0<x<时,f′(x)<0; 当x≥时,f′(x)>0 又∵f()=2-ln2 ∴f(x)的极小值为2-2ln2,无极大值 (Ⅱ)f′(x)=-+2a= 当a<-2时,-<,令f′(x)<0,得0<x<-或x>, 令f′(x)>0得-<x< 当-2<a<0时,得->,令f′(x)<0得0<x<或x>-; 令f′(x)>0得<x<-; 当a=-2时,f′(x)=-≤0 综上所述,当a<-2时f(x),的递减区间为(0,-)和(.+∞),递增区间为(-,); 当a=-2时,f(x)在(0,+∞)单调递减; 当-2<a<0时,f(x)的递减区间为(0,)和(-,+∞),递增区间为(,-). (Ⅲ)由(Ⅱ)可知,当a∈(-3,-2)时,f(x)在区间[1,3]上单调递减. 当x=1时,f(x)取最大值;当x=3时,f(x)取最小值; |f(x1)-f(x2)|≤f(1)-f(3)=(1+2a)-[(2-a)ln3++6a]=-4a+(a-2)ln3 ∵(m+ln3)a-ln3>|f(x1)-f(x2)|恒成立,∴(m+ln3)a-2ln3>-4a+(a-2)ln3 整理得ma>-4a,∵a<0,∴m<-4恒成立,∵-3<a<-2, ∴-<-4<-,∴m≤-
复制答案
考点分析:
相关试题推荐
椭圆manfen5.com 满分网的离心率为manfen5.com 满分网,长轴端点与短轴端点间的距离为manfen5.com 满分网
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点D(0,4)的直线l与椭圆C交于两点E,F,O为坐标原点,若△OEF为直角三角形,求直线l的斜率.
查看答案
口袋里装有大小相同的卡片八张,其中三张标有数字1,三张标有数学2,二张标有数字3,第一次从口袋里任里任意抽取一张,放回口袋里后第二次再任意抽取一张,记第一次与第二次取到卡片上数字这和为ξ
(Ⅰ)ξ为何值时,其发生的概率最大?说明理由;
(Ⅱ)求随机变量ξ的期望Eξ.
查看答案
设数列{an}是公差大于0的等差数列,a3,a5分别是方程x2-14x+45=0的两个实根
(1)求数列{an}的通项公式
(2)设manfen5.com 满分网,求数列bn的前n项和Tn查看答案
在△ABC中,角A,B,C所对应的边分别为a,b,c,且manfen5.com 满分网
(1)求角A的大小
(2)若manfen5.com 满分网,求△ABC的面积. 查看答案
如图,⊙O的直径AB的延长线与弦CD的延长线相交于点P,E为⊙O上一点,AE=AC,DE交AB于点F,且AB=2BP=4,
(1)求PF的长度.
(2)若圆F与圆O内切,直线PT与圆F切于点T,求线段PT的长度.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.