满分5 > 高中数学试题 >

已知函数,x∈[1,+∞), (1)若,求f(x)的最小值; (2)若对任意x∈...

已知函数manfen5.com 满分网,x∈[1,+∞),
(1)若manfen5.com 满分网,求f(x)的最小值;
(2)若对任意x∈[1,+∞),f(x)>0恒成立,试求实数a的取值范围.
(1)a=时,函数为,f在[1,+∞)上为增函数,故可求得函数f(x)的最小值 (2)问题等价于f(x)=x2+2x+a>0,在[1,+∞)上恒成立,利用分类参数法,通过求函数的最值,从而可确定a的取值范围 【解析】 (1)因为,f(x)在[1,+∞)上为增函数, 所以f(x)在[1,+∞)上的最小值为f(1)=.…(6分) (2)问题等价于f(x)=x2+2x+a>0,在[1,+∞)上恒成立. 即a>-(x+1)2+1在[1,+∞)上恒成立.  令g(x)=-(x+1)2+1,则g(x)在[1,+∞)上递减,当x=1时,g(x)max=-3,所以a>-3, 即实数a的取值范围是(-3,+∞).…(6分)
复制答案
考点分析:
相关试题推荐
如图,在直三棱柱ABC-A1B1C1中,AC=BC,点D是AB的中点.
(1)求证:BC1∥平面CA1D;
(2)求证:平面CA1D⊥平面AA1B1B.

manfen5.com 满分网 查看答案
若非零函数f(x)对任意实数a,b均有f(a+b)=f(a)•f(b),且当x<0时,f(x)>1.
(1)求证:f(x)>0
(2)求证:f(x)为减函数
(3)当manfen5.com 满分网时,解不等式manfen5.com 满分网
查看答案
某市居民自来水收费标准如下:每户每月用水不超过4吨时每吨为1.80元,当用水超过4吨时,超过部分每吨3.00元,某月甲、乙两户共交水费y元,已知甲、乙两用户该月用水量分别为5x,3x(吨).
(1)求y关于x的函数;
(2)若甲、乙两户该月共交水费26.4元,分别求出甲、乙两户该月的用水量和水费.
(精确到0.1)
查看答案
manfen5.com 满分网如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC=2,E是PC的中点,作EF⊥PB交PB于点F.
(1)证明:PA∥平面EDB;
(2)证明:PB⊥平面EFD.
查看答案
已知M={x∈R|manfen5.com 满分网≤1},P={x∈R|x>t},
(1)若M∩P=∅,求t的取值范围;
(2)若M∪P=R,求t的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.