满分5 > 高中数学试题 >

在△ABC中,角A,B,C所对的边分别为a,b,c,且满足csinA=acosC...

在△ABC中,角A,B,C所对的边分别为a,b,c,且满足csinA=acosC.
(1)求角C的大小;
(2)求manfen5.com 满分网sinA-cos(B+manfen5.com 满分网)的最大值,并求取得最大值时角A、B的大小.
(1)利用正弦定理化简csinA=acosC.求出tanC=1,得到C=. (2)B=-A,化简sinA-cos (B+)=2sin(A+).因为0<A<,推出 求出2sin(A+)取得最大值2.得到A=,B= 【解析】 (1)由正弦定理得  sinCsinA=sinAcosC, 因为0<A<π,所以sinA>0.从而sinC=cosC, 又cosC≠0,所以tanC=1,C=. (2)有(1)知,B=-A,于是 =sinA+cosA =2sin(A+). 因为0<A<,所以 从而当A+,即A=时 2sin(A+)取得最大值2. 综上所述,cos (B+)的最大值为2,此时A=,B=
复制答案
考点分析:
相关试题推荐
已知几何体A-BCED 的三视图如图所示,其中侧视图和俯视图都是腰长为4的等腰直角三角形,正视图为直角梯形.求:
(1)异面直线DE 与AB 所成角的余弦值;
(2)二面角A-ED-B 的正弦值;
(3)此几何体的体积V 的大小.

manfen5.com 满分网 查看答案
已知,p={x|x2-8x-20≤0},S={x||x-1|≤m}
(1)若p∪S⊆p,求实数m的取值范围;
(2)是否存在实数m,使“x∈p”是“x∈S”的充要条件,若存在,求出m的取值范围;若不存在,请说明理由.
查看答案
设M=2t+it-1×2t-1+…+i1×2+i,其中ik=0或1(k=0,1,2,…,t-1,t∈N+),并记M=(1it-1it-2…i1i2.对于给定的
x1=(1it-1it-2…i1i2,构造无穷数列{xn}如下:x2=(1iit-1it-2…i2i12,x3=(1i1iit-1…i3i2),x4=(1i2i1iit-1…i32…,
(1)若x1=109,则x3=     (用数字作答);
(2)给定一个正整数m,若x1=22m+2+22m+1+22m+1,则满足xn=x1(n∈N+且n≠1)的n的最小值为    查看答案
已知函数f(x)=(x-1)ln(1-x),则
(1)f(x)>0的解集为   
(2)f(x)的最大值为    查看答案
如图,将两块直角三角板拼在一起,若manfen5.com 满分网manfen5.com 满分网,则x=   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.