(1)利用f (x)=mx(m为常数,m>0且m≠1).代入an,求出an的表达式,利用等差数列的定义,证明数列{an}是等差数列;
(2)通过bn=an f (an),且数列{bn}的前n项和为Sn,当m=3时,求出Sn的表达式,利用错位相减法求出Sn;
(3)利用cn=f(an)lgf (an),要使cn≥cn+1对一切n∈N*成立,推出m,n的关系式,通过m>1,0<m<1结合一切n∈N*,数列{cn}中每一项恒不小于它后面的项,推出m的取值范围;
【解析】
(1)由题意f (an)=m2•mn-1,即man=mn+1.
∴an=n+1,∴an+1-an=1,∴数列{an}是以2为首项,1为公差的等差数列.
(2)由题意bn=anf (an)=(n+1)•mn+1,
当m=3时,bn=(n+1)•3n+1,∴Sn=2•32+3•33+4•34+…+(n+1)•3n+1…①,
①式两端同乘以3得,3Sn=2•33+3•34+4•35+…+(n+1)•3n+2…②
②-①并整理得,
2Sn=-2•32-33-34-35-…-3n+1+(n+1)•3n+2=-32-(32+33+34+35+…+3n+1)+(n+1)•3n+2
=-32-+(n+1)•3n+2=-9+ (1-3n)+(n+1)•3n+2=(n+)3n+2-.
∴Sn=(2n+1)3n+2-.
(3)由题意cn=f (an)•lg f (an)=mn+1•lgmn+1=(n+1)•mn+1•lgm,
要使cn≥cn+1对一切n∈N*成立,即(n+1)•mn+1•lgm≥(n+2)•mn+2•lgm,对一切n∈N*成立,
当m>1时,lgm>0,所以n+1≥m(n+2),即m≤对一切n∈N*成立,
因为=1-的最小值为,所以m≤,与m>1不符合,即此种情况不存在.
②当0<m<1时,lgm<0,所以n+1≤m(n+2),即m≥对一切n∈N*成立,所以≤m<1.
综上,当≤m<1时,数列{cn}中每一项恒不小于它后面的项.