满分5 > 高中数学试题 >

如果对于函数f(x)的定义域内的任意x1,x2都有|f(x1)-f(x2)|≤|...

如果对于函数f(x)的定义域内的任意x1,x2都有|f(x1)-f(x2)|≤|x1-x2|成立,那么就称函数f(x)是定义域上的“平缓函数”.
(1)判断函数f(x)=x2-x,x∈[0,1]是否是“平缓函数”?
(2)若函数f(x)是闭区间[0,1]上的“平缓函数”,且f(0)=f(1).证明:对任意的x,x2∈[0,1]都有manfen5.com 满分网
(1)只需按照定义作差:|f(x1)-f(x2)|,然后寻求|f(x2)-f(x1)|≤|x2-x1|成立的条件. (2)利用f(0)=f(1),进行适当放缩外,注意添项减项的技巧应用,即可证得结论. (1)【解析】 对于任意x1,x2∈[0,1],有0≤x1+x2≤2, ∴-1≤x1+x2-1≤1, ∴|x1+x2-1|≤1. ∴|f(x1)-f(x2)|=|(x12-x1)-(x22-x2)|=|x1-x2||x1+x2-1|≤|x1-x2|. ∴函数f(x)=x2-x,x∈[0,1]是“平缓函数”. (2)证明:当|x1-x2|<时,由已知得|f(x1)-f(x2)|≤|x1-x2|< 当|x1-x2|≥时,,x1,x2∈[0,1],不妨设0≤x1<x2≤1,其中x1-x2≥, ∵f(0)=f(1), ∴|f(x1)-f(x2)|=|f(x1)-f(0)+f(1)-f(x2)| ≤|f(x1)-f(0)|+|f(1)-f(x2)|≤|x1-0|+|1-x2|=x1-x2+1≤-+1=. ∴对任意的x1,x2∈[0,1],都有.成立.
复制答案
考点分析:
相关试题推荐
已知圆C经过坐标原点,且与直线x-y+2=0相切,切点为A(2,4).
(1)求圆C的方程;
(2)若斜率为-1的直线l与圆C相交于不同的两点M,N,求manfen5.com 满分网的取值范围..
查看答案
设数列{an}的前n项和为sn,点manfen5.com 满分网(n∈N+)均在函数y=3x-2的图象上.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=manfen5.com 满分网,Tn是数列{bn}的前n项和,求使得Tnmanfen5.com 满分网对所有n∈N+都成立的最大正整数m.
查看答案
如图,在长方体ABCD-A1B1C1D1中 AD=AA1=1,AB=2  
(1)证明:当点E在棱AB移动时,D1E⊥A1D;
(2)(理)在棱AB上是否存在点E,是二平面角D1-EC-D的平面角为manfen5.com 满分网?若存在,求出AE的长;若不存在,请说明理由.
(文)在棱AB上否存在点E使CE⊥面D1DE若存在,求出AE的长;若不存在,请说明理由.

manfen5.com 满分网 查看答案
某校从参加高二级期中考试的学生中抽出60名学生,将其成绩(均为整数)分成六段[40,50),[50,60),…,[90,100].后画出如下部分频率分布直方图.观察图形的信息,回答下列题:
(1)求第四小组的频率,并补全这个频率分布直方图;
(2)估计这次考试的及格率(60分以上为及格);若统计方法中,同一组数据用该组区间的中点值作为代表,据此估计本次考试的平均分;
(3)从成绩是[40,50],和[90,100分的学生中选两人,求他们在同一分数段的概率.

manfen5.com 满分网 查看答案
已知向量manfen5.com 满分网=(sinθ,cosθ)与manfen5.com 满分网=(manfen5.com 满分网,1),其中θ∈(0,manfen5.com 满分网
(1)若manfen5.com 满分网manfen5.com 满分网,求sinθ和cosθ的值;
(2)若f(θ)=manfen5.com 满分网,求f(θ)的值域.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.