满分5 > 高中数学试题 >

已知定义在R上的奇函数f(x),满足f(x-4)=-f(x),且在区间[0,2]...

已知定义在R上的奇函数f(x),满足f(x-4)=-f(x),且在区间[0,2]上是增函数,则( )
A.f(-25)<f(11)<f(80)
B.f(80)<f(11)<f(-25)
C.f(11)<f(80)<f(-25)
D.f(-25)<f(80)<f(11)
由f(x)满足f(x-4)=-f(x)可变形为f(x-8)=f(x),得到函数是以8为周期的周期函数,则有f(-25)=f(-1),f(80)=f(0),f(11)=f(3),再由f(x)在R上是奇函数,f(0)=0,得到f(80)=f(0)=0,f(-25)=f(-1),再由f(x)在区间[0,2]上是增函数,以及奇函数的性质,推出函数在[-2,2]上的单调性,即可得到结论. 【解析】 ∵f(x)满足f(x-4)=-f(x), ∴f(x-8)=f(x), ∴函数是以8为周期的周期函数, 则f(-25)=f(-1),f(80)=f(0),f(11)=f(3), 又∵f(x)在R上是奇函数,f(0)=0, 得f(80)=f(0)=0,f(-25)=f(-1), 而由f(x-4)=-f(x) 得f(11)=f(3)=-f(-1)=f(1), 又∵f(x)在区间[0,2]上是增函数,f(x)在R上是奇函数 ∴f(x)在区间[-2,2]上是增函数 ∴f(1)>f(0)>f(-1), 即f(-25)<f(80)<f(11), 故选D
复制答案
考点分析:
相关试题推荐
已知函数f(x)=loga(2x+b-1)(a>0,a≠1)的图象如图所示,则a,b满足的关系是( )
manfen5.com 满分网
A.0<a-1<b<1
B.0<b<a-1<1
C.0<b-1<a<1
D.0<a-1<b-1<1
查看答案
设{an}是首项大于零的等比数列,则“a1<a2”是“数列{an}是递增数列”的( )
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
查看答案
函数manfen5.com 满分网的最小正周期和最大值分别为( )
A.π,1
B.π,manfen5.com 满分网
C.2π,1
D.2π,manfen5.com 满分网
查看答案
已知manfen5.com 满分网,则manfen5.com 满分网的值是( )
A.-manfen5.com 满分网
B.manfen5.com 满分网
C.-manfen5.com 满分网
D.manfen5.com 满分网
查看答案
在R上定义运算⊙:a⊙b=ab-2a-b,则满足x⊙(x+2)<0的实数x的取值范围为( )
A.(0,2)
B.(-2,1)
C.(-∞,-2)∪(1,+∞)
D.(-1,2)
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.