考点分析:
相关试题推荐
已知:函数f(x)对一切实数x,y都有f(x+y)-f(y)=x(x+2y+1)成立,且f(1)=0.
(1)求f(0)的值.
(2)求f(x)的解析式.
(3)已知a∈R,设P:当
时,不等式f(x)+3<2x+a恒成立;Q:当x∈[-2,2]时,g(x)=f(x)-ax是单调函数.如果满足P成立的a的集合记为A,满足Q成立的a的集合记为B,求A∩C
RB(R为全集).
查看答案
如图,有一块矩形空地,要在这块空地上辟一个内接四边形为绿地,使其四个顶点分别落在矩形的四条边上,已知AB=a(a>2),BC=2,且AE=AH=CF=CG,设AE=x,绿地面积为y.
(1)写出y关于x的函数关系式,并指出这个函数的定义域.
(2)当AE为何值时,绿地面积最大?
查看答案
已知函数f(x)=x
2+ax,且对任意的实数x都有f(1+x)=f(1-x)成立.
(1)求实数a的值;
(2)利用单调性的定义证明函数f(x)在区间[1,+∞)上是增函数.
查看答案
已知集合A={x|3≤x<7},B={x|x
2-12x+20<0},C={x|x<a}.
(1)求A∪B;(∁
RA)∩B;
(2)若A∩C≠∅,求a的取值范围.
查看答案
设全集U=R,A={x|x
2+px+12=0},B={x|x
2-5x+q=0},若(C
UA)∩B={2},A∩(C
UB)={4},求A∪B.
查看答案