满分5 > 高中数学试题 >

已知圆C的圆心为原点O,且与直线相切. (1)求圆C的方程; (2)点P在直线x...

已知圆C的圆心为原点O,且与直线manfen5.com 满分网相切.
(1)求圆C的方程;
(2)点P在直线x=8上,过P点引圆C的两条切线PA,PB,切点为A,B,求证:直线AB恒过定点.

manfen5.com 满分网
(1)由圆C与直线相切,得到圆心到直线的距离d=r,故利用点到直线的距离公式求出d的值,即为圆C的半径,又圆心为原点,写出圆C的方程即可; (2)由PA,PB为圆O的两条切线,根据切线的性质得到OA与AP垂直,OB与PB垂直,根据90°圆周角所对的弦为直径可得A,B在以OP为直径的圆上,设出P的坐标为(8,b),由P和O的坐标,利用线段中点坐标公式求出OP中点坐标,即为以OP为直径的圆的圆心坐标,利用两点间的距离公式求出OP的长,即为半径,写出以OP为直径的圆方程,整理后,由AB为两圆的公共弦,两圆方程相减消去平方项,得到弦AB所在直线的方程,可得出此直线方程过(2,0),得证. (本小题满分14分) 【解析】 (1)依题意得:圆心(0,0)到直线的距离d=r, ∴d=,---(2分) 所以圆C的方程为x2+y2=16①;-----(4分) (2)连接OA,OB, ∵PA,PB是圆C的两条切线, ∴OA⊥AP,OB⊥BP,------(5分) ∴A,B在以OP为直径的圆上,-------(6分) 设点P的坐标为(8,b),b∈R, 则线段OP的中点坐标为,------(8分) ∴以OP为直径的圆方程为,-----(10分) 化简得:x2+y2-8x-by=0②,b∈R,------(11分) ∵AB为两圆的公共弦, ∴①-②得:直线AB的方程为8x+by=16,b∈R,------(13分) 则直线AB恒过定点(2,0).-------(14分)
复制答案
考点分析:
相关试题推荐
已知△ABC的顶点A(0,1),AB边上的中线CD所在的直线方程为2x-2y-1=0,AC边上的高BH所在直线的方程为y=0.
(1)求△ABC的顶点B,C的坐标;
(2)若圆M经过A,B且与直线x-y+3=0相切于点P(-3,0),求圆M的方程.
查看答案
如图(1),边长为2的正方形ABEF中,D,C分别为EF,AF上的点,且ED=CF,现沿DC把△CDF剪切、拼接成如图(2)的图形,再将△BEC,△CDF,△ABD沿BC,CD,BD折起,使E,F,A三点重合于点A′.
(1)求证:BA′⊥CD;
(2)求四面体B-A′CD体积的最大值.
manfen5.com 满分网
查看答案
已知不等式x2-3x+t<0的解集为{x|1<x<m,x∈R}
(1)求t,m的值;
(2)若函数f(x)=-x2+ax+4在区间(-∞,1]上递增,求关于x的不等式loga(-mx2+3x+2-t)<0的解集.
查看答案
函数f(x)的定义域为A,若x1,x2∈A且f(x1)=f(x2)时总有x1=x2,则称f(x)为单函数.例如,函数f(x)=2x+1(x∈R)是单函数.下列命题:
①函数f(x)=x2(x∈R)是单函数;
②若f(x)为单函数,x1,x2∈A且x1≠x2,则f(x1)≠f(x2);
③若f:A→B为单函数,则对于任意b∈B,它至多有一个原象;
④函数f(x)在某区间上具有单调性,则f(x)一定是单函数.
其中的真命题是    .(写出所有真命题的编号) 查看答案
如果直线l:y=kx-5与圆x2+y2-2x+my-4=0交于M、N两点,且M、N关于直线2x+y=0对称,则直线l被圆截得的弦长为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.