满分5 > 高中数学试题 >

已知全集U={1,2,3,4,5,6,7},集合M={x∈Z|x2-6x+5≤0...

已知全集U={1,2,3,4,5,6,7},集合M={x∈Z|x2-6x+5≤0},则集合∁UM=   
已知集合M={x∈Z|x2-6x+5≤0},根据补集的定义进行求解,注意全集U的元素是整数,从而求解; 【解析】 ∵集合M={x∈Z|x2-6x+5≤0}, ∵x2-6x+5≤0,∴1≤x≤5 ∴M={1,2,3,4,5} ∴全集U={1,2,3,4,5,6,7}, ∁UM={6,7}. 故答案为:{6,7}.
复制答案
考点分析:
相关试题推荐
已知a∈R,函数f(x)=x|x-a|,
(Ⅰ)当a=2时,写出函数y=f(x)的单调递增区间;
(Ⅱ)当a>2时,求函数y=f(x)在区间[1,2]上的最小值;
(Ⅲ)设a≠0,函数f(x)在(m,n)上既有最大值又有最小值,请分别求出m、n的取值范围(用a表示).
查看答案
已知函数f(x)=x2+manfen5.com 满分网(x≠0,a∈R)
(1)当a为何值时,函数f(x)为偶函数;
(2)若f(x)在区间[2,+∞)是增函数,求实数a的取值范围.
查看答案
已知f(x)为R上的奇函数,当x>0时,f(x)为二次函数,且满足f(2)=-1,不等式组manfen5.com 满分网的解集是{x|1<x<3}.
(1)求函数f(x)的解析式;
(2)作出f(x)的图象并根据图象讨论关于x的方程:f(x)-c=0(c∈R)根的个数.

manfen5.com 满分网 查看答案
已知定义域为R的函数f(x)=manfen5.com 满分网是奇函数.
(Ⅰ)求b的值;
(Ⅱ)判断函数f(x)的单调性;
(Ⅲ)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.
查看答案
已知集合A={x|3≤x<6},B={x|2<x<9}.
(1)分别求:∁R(A∩B),(∁RB)∪A;
(2)已知C={x|a<x<a+1},若C⊆B,求实数a的取值集合.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.