满分5 > 高中数学试题 >

已知函数,其中a>0. (1)若f(x)在x=1处取得极值,求a的值; (2)求...

已知函数manfen5.com 满分网,其中a>0.
(1)若f(x)在x=1处取得极值,求a的值;
(2)求f(x)的单调区间;
(3)若f(x)的最小值为1,求a的取值范围.
(1)对函数求导,令f′(1)=0,即可解出a值. (2)f′(x)>0,对a的取值范围进行讨论,分类解出单调区间.a≥2时,在区间(0,+∞)上是增函数, (3)由(2)的结论根据单调性确定出最小值,当a≥2时,由(II)知,f(x)的最小值为f(0)=1,恒成立;当0<a<2时,判断知最小值小于1,此时a无解.当0<a<2时,(x)的单调减区间为,单调增区间为 【解析】 (1), ∵f′(x)在x=1处取得极值,f′(1)=0   即 a+a-2=0,解得  a=1 (2), ∵x≥0,a>0, ∴ax+1>0 ①当a≥2时,在区间(0,+∞)上f′(x)>0. ∴f(x)的单调增区间为(0,+∞) ②当0<a<2时,由f′(x)>0解得 由 ∴f(x)的单调减区间为,单调增区间为 (3)当a≥2时,由(II)知,f(x)的最小值为f(0)=1 当0<a<2时,由(II)②知,处取得最小值, 综上可知,若f(x)的最小值为1,则a的取值范围是[2,+∞)
复制答案
考点分析:
相关试题推荐
已知动圆过定点F(0,2),且与定直线L:y=-2相切.
(I)求动圆圆心的轨迹C的方程;
(II)若AB是轨迹C的动弦,且AB过F(0,2),分别以A、B为切点作轨迹C的切线,设两切线交点为Q,证明:AQ⊥BQ.
查看答案
选修4-5:不等式证明选讲
已知实数a,b,c,d满足a+b+c+d=3,a2+2b2+3c2+6d2=5,求a的取值范围.
查看答案
选修4-4:坐标系与参数方程
已知曲线C的参数方程为manfen5.com 满分网,曲线D的极坐标方程为manfen5.com 满分网
(1)将曲线C的参数方程化为普通方程;
(2)试确定实数a的取值范围,使曲线C与曲线D有公共点.
查看答案
选修4-2 矩阵与变换
已知矩阵manfen5.com 满分网,点M(-1,-1),点N(1,1).
(1)求线段MN在矩阵A对应的变换作用下得到的线段M'N'的长度;
(2)求矩阵A的特征值与特征向量.
查看答案
选修4-1:几何证明选讲
如图,以Rt△ABC的一条直角边AB直径作圆O,交斜边AC于P点,过P点作圆O的切线交BC于E点.求证:BE=CE.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.