满分5 > 高中数学试题 >

设椭圆的一个顶点与抛物线的焦点重合,F1,F2分别是椭圆的左、右焦点,且离心率且...

设椭圆manfen5.com 满分网的一个顶点与抛物线manfen5.com 满分网的焦点重合,F1,F2分别是椭圆的左、右焦点,且离心率manfen5.com 满分网且过椭圆右焦点F2的直线l与椭圆C交于M、N两点.
(1)求椭圆C的方程;
(2)是否存在直线l,使得manfen5.com 满分网.若存在,求出直线l的方程;若不存在,说明理由.
(3)若AB是椭圆C经过原点O的弦,MN∥AB,求证:manfen5.com 满分网为定值.
(1)根据抛物线的焦点确定椭圆的顶点,结合离心率,即可求出椭圆的标准方程. (2)由题可知,椭圆的右焦点为(1,0),直线l与椭圆必相交.分两张情况讨论:①当直线斜率不存在时,经检验不合题意;②设存在直线l为y=k(x-1)(k≠0),与椭圆方程联立,利用韦达定理,结合向量条件,即可求得直线l的方程; (3)设M(x1,y1),N(x2,y2),A(x3,y3),B(x4,y4),求出|MN|与|AB|的长,从而可证结论. (1)【解析】 抛物线的焦点为 ∵椭圆的一个顶点与抛物线的焦点重合 ∴椭圆的一个顶点为,即 ∵,∴a=2, ∴椭圆的标准方程为(3分) (2)【解析】 由题可知,椭圆的右焦点为(1,0),直线l与椭圆必相交. ①当直线斜率不存在时,M(1,),N(1,-),∴,不合题意. ②设存在直线l为y=k(x-1)(k≠0),且M(x1,y1),N(x2,y2). 由得(3+4k2)x2-8k2x+4k2-12=0, ,, = 所以, 故直线l的方程为或(8分) (3)证明:设M(x1,y1),N(x2,y2),A(x3,y3),B(x4,y4) 由(2)可得:|MN|= =. 由消去y,并整理得:, |AB|=, ∴为定值  (13分)
复制答案
考点分析:
相关试题推荐
某种出口产品的关税税率t,市场价格x(单位:千元)与市场供应量p(单位:万件)之间近似满足关系式:p=2(1-kt)(x-b)2,其中k,b均为常数.当关税税率为75%时,若市场价格为5千元,则市场供应量均为1万元;若市场价格为7千元,则市场供应量约为2万件.
(1)试确定k、b的值;
(2)市场需求量q(单位:万件)与市场价格x近似满足关系式:q=2-x.p=q时,市场价格称为市场平衡价格.当市场平衡价格不超过4千元时,试确定关税税率的最大值.
查看答案
如图示,已知平行四边形ABCD和矩形ACEF所在平面互相垂直,AB=1,AD=2,∠ADC=60°,AF=1,M是线段EF的中点.
(1)求证:AC⊥BF;
(2)设二面角A-FD-B的大小为θ,求sinθ的值;
(3)设点P为一动点,若点P从M出发,沿棱按照M→E→C的路线运动到点C,求这一过程中形成的三棱锥P-BFD的体积的最小值.

manfen5.com 满分网 查看答案
某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40件产品作为样本称出它们的重量(单位:克),重量的分组区间为(490,495],(495,500],…,(510,515],由此得到样本的频率分布直方图,如图所示.
(1)根据频率分布直方图,求重量超过505克的产品数量.
(2)在上述抽取的40件产品中任取2件,设Y为重量超过505克的产品数量,求Y的分布列.
(3)从流水线上任取5件产品,求恰有2件产品合格的重量超过505克的概率.

manfen5.com 满分网 查看答案
已知向量manfen5.com 满分网manfen5.com 满分网,函数manfen5.com 满分网manfen5.com 满分网
(1)求函数g(x)的最小正周期;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,且f(c)=3,c=1,manfen5.com 满分网,且a>b,求a,b的值.
查看答案
从集合A={1,2,3,…,n}中任取k(k≤n)个元素,组成集合A的子集B,记全部子集中所有各元素之和为manfen5.com 满分网,则当manfen5.com 满分网时,k的值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.