满分5 > 高中数学试题 >

已知x,y满足且目标函数z=2x+y的最大值为7,最小值为1,则= .

已知x,y满足manfen5.com 满分网且目标函数z=2x+y的最大值为7,最小值为1,则manfen5.com 满分网=   
先根据约束条件画出可行域,再利用几何意义求最值,z=2x+y表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最大最小值时所在的顶点即可. 【解析】 由题意得: 目标函数z=2x+y在点B取得最大值为7, 在点A处取得最小值为1, ∴A(1,-1),B(3,1), ∴直线AB的方程是:x-y-2=0, ∴则=-2. 故填:-2.
复制答案
考点分析:
相关试题推荐
函数f(x)=x3+x,x∈R,当manfen5.com 满分网时,f(msinθ)+f(1-m)>0恒成立,则实数m的取值范围是( )
A.(0,1)
B.(-∞,0)
C.manfen5.com 满分网
D.(-∞,1)
查看答案
若A为不等式组manfen5.com 满分网表示的平面区域,则a从-2连续变化到1时,动直线x+y=a扫过A中的那部分区域的面积为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
定义在R上的函数f(x)对∀x1,x2∈R,都有(x1-x2)[f(x1)-f(x2)]<0,若函数f(x+1)为奇函数,则不等式f(1-x)<0的解集为( )
A.(1,+∞)
B.(0,+∞)
C.(-∞,0)
D.(-∞,1)
查看答案
已知函数f(x)=loga(1-x)+loga(x+3)(0<a<1)
(1)求函数f(x)的定义域;
(2)求函数f(x)的零点;
(3)若函数f(x)的最小值为-4,求a的值.
查看答案
已知函数f(x)=a-manfen5.com 满分网在R上是奇函数.
(Ⅰ)求a的值;
(Ⅱ)判断并证明f(x)在R上的单调性.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.