满分5 > 高中数学试题 >

设a为实数,函数f(x)=ex-2x+2a,x∈R. (1)求f(x)的单调区间...

设a为实数,函数f(x)=ex-2x+2a,x∈R.
(1)求f(x)的单调区间及极值;
(2)求证:当a>ln2-1且x>0时,ex>x2-2ax+1.
(1)由f(x)=ex-2x+2a,x∈R,知f′(x)=ex-2,x∈R.令f′(x)=0,得x=ln2.列表讨论能求出f(x)的单调区间区间及极值. (2)设g(x)=ex-x2+2ax-1,x∈R,于是g′(x)=ex-2x+2a,x∈R.由(1)知当a>ln2-1时,g′(x)最小值为g′(ln2)=2(1-ln2+a)>0.于是对任意x∈R,都有g′(x)>0,所以g(x)在R内单调递增.由此能够证明ex>x2-2ax+1. (1)【解析】 ∵f(x)=ex-2x+2a,x∈R, ∴f′(x)=ex-2,x∈R. 令f′(x)=0,得x=ln2. 于是当x变化时,f′(x),f(x)的变化情况如下表: x (-∞,ln2) ln2 (ln2,+∞) f′(x) - + f(x) 单调递减 2(1-ln2+a) 单调递增 故f(x)的单调递减区间是(-∞,ln2), 单调递增区间是(ln2,+∞), f(x)在x=ln2处取得极小值, 极小值为f(ln2)=eln2-2ln2+2a=2(1-ln2+a),无极大值. (2)证明:设g(x)=ex-x2+2ax-1,x∈R, 于是g′(x)=ex-2x+2a,x∈R. 由(1)知当a>ln2-1时, g′(x)最小值为g′(ln2)=2(1-ln2+a)>0. 于是对任意x∈R,都有g′(x)>0,所以g(x)在R内单调递增. 于是当a>ln2-1时,对任意x∈(0,+∞),都有g(x)>g(0). 而g(0)=0,从而对任意x∈(0,+∞),g(x)>0. 即ex-x2+2ax-1>0, 故ex>x2-2ax+1.
复制答案
考点分析:
相关试题推荐
若a,b是正常数,a≠b,x,y∈(0,+∞),则manfen5.com 满分网,当且仅当manfen5.com 满分网时上式取等号.利用以上结论,可以得到函数manfen5.com 满分网manfen5.com 满分网)的最小值为    查看答案
已知x,y满足manfen5.com 满分网且目标函数z=2x+y的最大值为7,最小值为1,则manfen5.com 满分网=    查看答案
函数f(x)=x3+x,x∈R,当manfen5.com 满分网时,f(msinθ)+f(1-m)>0恒成立,则实数m的取值范围是( )
A.(0,1)
B.(-∞,0)
C.manfen5.com 满分网
D.(-∞,1)
查看答案
若A为不等式组manfen5.com 满分网表示的平面区域,则a从-2连续变化到1时,动直线x+y=a扫过A中的那部分区域的面积为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
定义在R上的函数f(x)对∀x1,x2∈R,都有(x1-x2)[f(x1)-f(x2)]<0,若函数f(x+1)为奇函数,则不等式f(1-x)<0的解集为( )
A.(1,+∞)
B.(0,+∞)
C.(-∞,0)
D.(-∞,1)
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.