已知函数f(x)=ax-2lnx,a∈R.
(Ⅰ)当a=3时,求函数f(x)在(1,f(1))的切线方程.
(Ⅱ)求函数f(x)的极值.
(Ⅲ)对于曲线上的不同两点P
1(x
1,y
1),P
2(x
2,y
2),如果存在曲线上的点Q(x
,y
),且x
1<x
<x
2,使得曲线在点Q处的切线l∥P
1P
2,则称l为弦P
1P
2的伴随切线.当a=2时,已知两点A(1,f(1)),B(e,f(e)),试求弦AB的伴随切线l的方程.
考点分析:
相关试题推荐
某投资商到一开发区投资72万元建起一座蔬菜加工厂,第一年共支出12万元,以后每年支出增加4万元,从第一年起每年蔬菜销售收入为50万元.设f(n)表示前n年的纯利润总和,g(n)表示前n年的总支出.[f(n)=前n年的总收入-前n年的总支出-投资额].
(1)写出g(n)的关系式.
(2)写出前n年的纯利润总和f(n)关于n的函数关系式;并求该厂从第几年开始盈利?
(3)若干年后,投资商为开发新项目,对该厂有两种处理方案:①年平均纯利润达到最大时,以48万元出售该厂;②纯利润总和达到最大时,以16万元出售该厂,问哪种方案更合算?
查看答案
已知等差数列{a
n}的前9项和为171.
(1)求a
5;
(2)若a
2=7,设
,求数列{c
n}的前n项和S
n.
查看答案
设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,且
.
(Ⅰ)求B的大小;
(Ⅱ)若
,且△ABC的面积为
,求a+c的值.
查看答案
已知椭圆C的长轴长与短轴长之比为
,焦点坐标分别为F
1(-2,0),F
2(2,0).
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)求以椭圆C长轴的端点为焦点,离心率
的双曲线的标准方程.
查看答案
已知向量a=
,b=(2cosx,cos2x),函数f(x)=a•b.
(Ⅰ)求函数f(x)的解析式和它的单调递减区间;
(Ⅱ)请根据y=f(x)的图象是由y=sinx的图象平移和伸缩变换得到的过程,补充填写下面的内容.
(以下两小题任选一题,两题都做,以第1小题为准)
①把y=sinx的图象由______得到______的图象,再把得到的图象上的所有点的横坐标缩小为原来的一半(纵坐标不变),得到______的图象,最后把图象上的所有点的纵坐标伸长为原来的2倍(横坐标不变),得到______的图象;
②把y=sinx的图象上的所有点的横坐标缩小为原来的一半(纵坐标不变),得到______的图象,再将得到的图象向左平移______单位,得到______的图象;最后把图象上的所有点的纵坐标伸长为原来的2倍(横坐标不变),得到______的图象.
查看答案