满分5 > 高中数学试题 >

已知函数y=f(x)是R上的偶函数,对于x∈R都有f(x-6)=f(x)+f(3...

已知函数y=f(x)是R上的偶函数,对于x∈R都有f(x-6)=f(x)+f(3)成立,且f(0)=-2,当x1,x2∈[0,3],且x1≠x2时,都有manfen5.com 满分网>0.则给出下列命题:
①f(2010)=-2;
②函数y=f(x)图象的一条对称轴为x=-6;
③函数y=f(x)在[-9,-6]上为增函数;
④方程f(x)=0在[-9,9]上有4个根.
其中正确命题的序号是    .(请将你认为是真命题的序号都填上)
①对于条件:“x∈R都有f(x+6)=f(x)+f(3)成立”,令x=-3,再结合函数为偶函数可得f(-3)=f(3)=0,代入已知条件可得函数的周期为6,从而得到f(2010)=-2; ②欲证“直线x=-6是函数y=f(x)的图象的一条对称轴”,即证f(-6+x)=f(-6-x); ③当x1,x2∈[0,3]且x1≠x2时,都有 ,说明函数在区间上是增函数,再用周期性的奇偶性可得结论不正确; ④由①的结论可知在区间[-9,9]上f(-9)=f(-3)=f(3)=f(9)=0,再结合单调函数根的分布可得结论正确. 【解析】 对于①,先令x=3,即有f(-3)=f(3)+f(3), 再依据函数y=f(x)是R上的偶函数,有f(-3)=f(3),得f(3)=0, 这样f(x-6)=f(x)+f(3)=f(x)函数f(x)的周期就是6, 因此f(2010)=f(335×6)=f(0)=-2; 对于②,∵f(x-6)=f(x)+f(3), 又∵f(-x-6)=f(-x)+f(3),且f(-x)=f(x) ∴f(-6+x)=f(-6-x) ∴直线x=-6是函数y=f(x)的图象的一条对称轴,故②对; 对于③,首先根据:当x1,x2∈[0,3]且x1≠x2时,都有 , 说明函数在区间[0,3]上是增函数,再结合函数的周期为6, 将区间[0,3]右移6个单位,可得函数在[6,9]上为增函数 又∵函数为偶函数,在关于原点对称的区间上单调性相反 ∴函数y=f(x)在[-9,-6]上为减函数,可得③不正确; 对于④,根据①的结论,f(-3)=f(3)=0,再结合函数周期为6 得f(-9)=f(-3)=f(3)=f(9)=0, 再根据在某个区间上的单调函数在这个区间内至多有一个零点, 得函数f(x)在[-9,9]上只有以上4个零点,所以④正确. 故答案为①②④.
复制答案
考点分析:
相关试题推荐
为了保护环境,发展低碳经济,2010年全国“两会”使用的记录纸、笔记本、环保袋、手提袋等均是以石灰石为原料生产的石头纸用品,已知某单位每月石头纸用品的产量最少为300吨,最多为500吨,每月成本y(元)与每月产量x(吨)之间的函数关系可近似的表示为:y=manfen5.com 满分网x2-200x+80000,若要使每吨的平均成本最低,则该单位每月产量应为    吨. 查看答案
已知manfen5.com 满分网,则f(a)的最大值为    查看答案
若函数f(x)=loga(2x2+x)(a>0,a≠1)在区间manfen5.com 满分网恒有f(x)>0,则f(x)的单调递增区间是    查看答案
函数manfen5.com 满分网在区间[-1,2]上的值域是    查看答案
已知全集U,集合A、B为U的两个非空子集,若“x∈A”y与“x∈B”是一对互斥事件,则称A与B为一组U(A,B),规定:U(A,B)≠U(B,A).当集合U={1,2,3,4,5}时,所有的U(A,B)的组数是( )
A.70
B.30
C.180
D.150
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.