甲、乙、丙三人进行象棋比赛,每两人比赛一场,共赛三场.每场比赛胜者得3分,负者得0分,没有平局,在每一场比赛中,甲胜乙的概率为
,甲胜丙的概率为
,乙胜丙的概率为
.
(1)求甲获第一名且丙获第二名的概率;
(2)设在该次比赛中,甲得分为ξ,求ξ的分布列和数学期望.
考点分析:
相关试题推荐
若二次函数满足f(x+1)-f(x)=2x且f(0)=1.
(1)求f(x)的解析式;
(2)若在区间[-1,1]上不等式f(x)>2x+m恒成立,求实数m的取值范围.
查看答案
已知函数y=f(x)是R上的偶函数,对于x∈R都有f(x-6)=f(x)+f(3)成立,且f(0)=-2,当x
1,x
2∈[0,3],且x
1≠x
2时,都有
>0.则给出下列命题:
①f(2010)=-2;
②函数y=f(x)图象的一条对称轴为x=-6;
③函数y=f(x)在[-9,-6]上为增函数;
④方程f(x)=0在[-9,9]上有4个根.
其中正确命题的序号是
.(请将你认为是真命题的序号都填上)
查看答案
为了保护环境,发展低碳经济,2010年全国“两会”使用的记录纸、笔记本、环保袋、手提袋等均是以石灰石为原料生产的石头纸用品,已知某单位每月石头纸用品的产量最少为300吨,最多为500吨,每月成本y(元)与每月产量x(吨)之间的函数关系可近似的表示为:y=
x
2-200x+80000,若要使每吨的平均成本最低,则该单位每月产量应为
吨.
查看答案
已知
,则f(a)的最大值为
.
查看答案
若函数f(x)=log
a(2x
2+x)(a>0,a≠1)在区间
恒有f(x)>0,则f(x)的单调递增区间是
.
查看答案