满分5 > 高中数学试题 >

在△ABC中,a,b,c分别为内角A,B,C的对边,且2asinA=(2b+c)...

在△ABC中,a,b,c分别为内角A,B,C的对边,且2asinA=(2b+c)sinB+(2c+b)sinC.
(Ⅰ)求A的大小;
(Ⅱ)求sinB+sinC的最大值.
(Ⅰ)根据正弦定理,设,把sinA,sinB,sinC代入2asinA=(2b+c)sinB+(2c+b)sinC求出a2=b2+c2+bc 再与余弦定理联立方程,可求出cosA的值,进而求出A的值. (Ⅱ)根据(Ⅰ)中A的值,可知c=60°-B,化简得sin(60°+B)根据三角函数的性质,得出最大值. 【解析】 (Ⅰ)设 则a=2RsinA,b=2RsinB,c=2RsinC ∵2asinA=(2b+c)sinB+(2c+b)sinC 方程两边同乘以2R ∴2a2=(2b+c)b+(2c+b)c 整理得a2=b2+c2+bc ∵由余弦定理得a2=b2+c2-2bccosA 故cosA=-,A=120° (Ⅱ)由(Ⅰ)得:sinB+sinC =sinB+sin(60°-B) =cosB+sinB =sin(60°+B) 故当B=30°时,sinB+sinC取得最大值1.
复制答案
考点分析:
相关试题推荐
在等差数列{an}中,a10=18,前5项的和S5=-15.
(1)求数列{an}的通项公式;  
(2)求数列{an}的前n项和的最小值,并指出何时取最小.
查看答案
建造一个容量为8m3,深度为2m的长方体无盖水池,如果池底和池壁的造价每平方分别为180元和80元,求水池的最低总造价,并求此时水池的长和宽.
查看答案
如图所示在△ABC中,D在边BC上,且BD=2,DC=1,∠B=60°,∠ADB=30°,求AC的长及△ABC的面积.

manfen5.com 满分网 查看答案
已知实数x、y满足manfen5.com 满分网则目标函数z=x+2y的最大值是    查看答案
在等比数列{an}中,若a1•a5=16,a4=8,则a6=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.