已知函数f(x)=ax
2+bx+c(a>0,b∈R,c∈R).
(1)若函数f(x)的最小值是f(-1)=0,f(0)=1,且对称轴是x=-1,
求g(2)+g(-2)的值;
(2)在(1)条件下,求f(x)在区间[t,t+2](t∈R)上的最小值f(x)
min.
考点分析:
相关试题推荐
附加题:
已知f(x)=x-
,
(1)判断函数在区间(-∞,0)上的单调性,并用定义证明;
(2)画出该函数在定义域上的图象.(图象体现出函数性质即可)
查看答案
某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.
(Ⅰ)当每辆车的月租金定为3600元时,能租出多少辆车?
(Ⅱ)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?
查看答案
画出函数f(x)=x
2-2|x|-1的图象,并写出该函数的单调区间与值域.
查看答案
已知集合A={x|3≤x≤7},B={x|2<x<10},C={x|x<a}.
(1)求A∪B;
(2)求(C
RA)∩B;
(3)若A⊆C,求a的取值范围.
查看答案