满分5 > 高中数学试题 >

已知函数f(x)对任意实数x、y都有f(xy)=f(x)•f(y),且f(-1)...

已知函数f(x)对任意实数x、y都有f(xy)=f(x)•f(y),且f(-1)=1,f(27)=9,当0≤x<1时,0≤f(x)<1.
(1)判断f(x)的奇偶性;
(2)判断f(x)在[0,+∞)上的单调性,并给出证明;
(3)若a≥0且f(a+1)≤manfen5.com 满分网,求a的取值范围.
(1)利用赋值法,令y=-1,代入抽象函数表达式即可证明函数的奇偶性; (2)先证明当x>0时,f(x)>0,再利用已知和单调函数的定义,证明函数f(x)在[0,+∞)上的单调性; (3)先利用赋值法求得f(3)=,再利用函数的单调性解不等式即可 【解析】 【解析】 (1)令y=-1,则f(-x)=f(x)•f(-1), ∵f(-1)=1,∴f(-x)=f(x),且x∈R ∴f(x)为偶函数. (2)若x≥0,则f(x)==•=[]2≥0. 若存在x>0,使得f(x)=0,则,与已知矛盾, ∴当x>0时,f(x)>0 设0≤x1<x2,则0≤<1, ∴f(x1)==•f(x2), ∵当x≥0时f(x)≥0,且当0≤x<1时,0≤f(x)<1. ∴0≤<1, ∴f(x1)<f(x2), 故函数f(x)在[0,+∞)上是增函数. (3)∵f(27)=9,又f(3×9)=f(3)•f(9)=f(3)•f(3)•f(3)=[f(3)]3, ∴9=[f(3)]3, ∴f(3)=, ∵f(a+1)≤, ∴f(a+1)≤f(3), ∵a≥0, ∴(a+1)∈[0,+∞),3∈[0,+∞), ∵函数在[0,+∞)上是增函数. ∴a+1≤3,即a≤2, 又a≥0, 故0≤a≤2.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=2x的定义域是[0,3],设g(x)=f(2x)-f(x+2).
(1)求g(x)的解析式及定义域;
(2)求函数g(x)的最大值和最小值.
查看答案
某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨为1.80元,当居民用水超过4吨时,超过部分每吨3.00元.若某月某用户用水量为x吨,交水费为y元.
(1)求y关于x的函数关系;
(2)若某用户某月交水费为31.2元,求该用户该月的用水量.
查看答案
已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.
(Ⅰ)求A∪B,(∁UA)∩B;
(Ⅱ)如果A∩C≠∅,求a的取值范围.
查看答案
计算下列各题:
(1)manfen5.com 满分网-lg25-2lg2;
(2)manfen5.com 满分网
查看答案
函数f(x)的定义域为A,若x1,x2∈A且f(x1)=f(x2)时总有x1=x2,则称f(x)为单函数.例如,函数f(x)=2x+1(x∈R)是单函数.下列命题:
①函数f(x)=x2(x∈R)是单函数;
②若f(x)为单函数,x1,x2∈A且x1≠x2,则f(x1)≠f(x2);
③若f:A→B为单函数,则对于任意b∈B,它至多有一个原象;
④函数f(x)在某区间上具有单调性,则f(x)一定是单函数.
其中的真命题是    .(写出所有真命题的编号) 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.