(Ⅰ)利用正弦定理把题设等式中的边转化成角的正弦,整理后可求得sinC和sinA的关系式,则的值可得.
(Ⅱ)先通过余弦定理可求得a和c的关系式,同时利用(Ⅰ)中的结论和正弦定理求得a和c的另一关系式,最后联立求得a和c,利用三角形面积公式即可求得答案.
【解析】
(Ⅰ)由正弦定理设
则===
整理求得sin(A+B)=2sin(B+C)
又A+B+C=π
∴sinC=2sinA,即=2
(Ⅱ)由余弦定理可知cosB==①
由(Ⅰ)可知==2②
①②联立求得c=2,a=1
sinB==
∴S=acsinB=