满分5 > 高中数学试题 >

设f(x)=2x3+ax2+bx+1的导数为f′(x),若函数y=f′(x)的图...

设f(x)=2x3+ax2+bx+1的导数为f′(x),若函数y=f′(x)的图象关于直线x=-manfen5.com 满分网对称,且f′(1)=0
(Ⅰ)求实数a,b的值
(Ⅱ)求函数f(x)的极值.
(Ⅰ)先对f(x)求导,f(x)的导数为二次函数,由对称性可求得a,再由f′(1)=0即可求出b (Ⅱ)对f(x)求导,分别令f′(x)大于0和小于0,即可解出f(x)的单调区间,继而确定极值. 【解析】 (Ⅰ)因f(x)=2x3+ax2+bx+1,故f′(x)=6x2+2ax+b 从而f′(x)=6y=f′(x)关于直线x=-对称, 从而由条件可知-=-,解得a=3 又由于f′(x)=0,即6+2a+b=0,解得b=-12 (Ⅱ)由(Ⅰ)知f(x)=2x3+3x2-12x+1 f′(x)=6x2+6x-12=6(x-1)(x+2) 令f′(x)=0,得x=1或x=-2 当x∈(-∞,-2)时,f′(x)>0,f(x)在(-∞,-2)上是增函数; 当x∈(-2,1)时,f′(x)<0,f(x)在(-2,1)上是减函数; 当x∈(1,+∞)时,f′(x)>0,f(x)在(1,+∞)上是增函数. 从而f(x)在x=-2处取到极大值f(-2)=21,在x=1处取到极小值f(1)=-6.
复制答案
考点分析:
相关试题推荐
在△ABC中,内角A,B,C的对边分别是a,b,c,若manfen5.com 满分网,sinC=2manfen5.com 满分网sinB,则A角大小为    查看答案
已知等差数列{an}中,a1=1,a3=-3.
(I)求数列{an}的通项公式;
(II)若数列{an}的前k项和Sk=-35,求k的值.
查看答案
已知α∈(0,manfen5.com 满分网),β∈(manfen5.com 满分网,π)且sin(α+β)=manfen5.com 满分网,cosβ=-manfen5.com 满分网.求sinα.
查看答案
函数f(x)的定义域为A,若x1,x2∈A,且f(x1)=f(x2)时总有x1=x2,则称f(x)为单函数.例如f(x)=2x+1(x∈R)是单函数,下列命题:
①函数f(x)=x2(x∈R)是单函数;
②函数f(x)=2x(x∈R)是单函数,
③若f(x)为单函数,x1,x2∈A且x1≠x2,则f(x1)≠f(x2);
④在定义域上具有单调性的函数一定是单函数
其中的真命题是    (写出所有真命题的编号) 查看答案
已知{an}是递增等比数列,a2=2,a4-a3=4,则此数列的公比q=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.