满分5 > 高中数学试题 >

已知函数f(x)=x3-3ax+b在x=1处有极小值2. (Ⅰ)求函数f(x)的...

已知函数f(x)=x3-3ax+b在x=1处有极小值2.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若函数manfen5.com 满分网在[0,2]只有一个零点,求m的取值范围.
(I)求导函数f'(x)=3x2-3a,利用函数f(x)=x3-3ax+b在x=1处有极小值2,可得,从而可求函数f(x)的解析式; (Ⅱ),再进行分类讨论:当m=0时,g(x)=-2x+3,g(x)在[0,2]上有一个零点;当m≠0时,①若方程g(x)=0在[0,2]上有2个相等实根,即函数g(x)在[0,2]上有一个零点;②若g(x)有2个零点,1个在[0,2]内,另1个在[0,2]外,从而可求m的取值范围. 【解析】 (I)f'(x)=3x2-3a…(1分) 依题意有,…(3分) 解得,…(4分) 此时f'(x)=3x2-3=3(x-1)(x+1), x∈(-1,1),f'(x)<0,x∈(1,+∞),f'(x)>0,满足f(x)在x=1处取极小值 ∴f(x)=x3-3x+4…(5分) (Ⅱ)f'(x)=3x2-3 ∴…(6分) 当m=0时,g(x)=-2x+3, ∴g(x)在[0,2]上有一个零点(符合),…(8分) 当m≠0时, ①若方程g(x)=0在[0,2]上有2个相等实根,即函数g(x)在[0,2]上有一个零点. 则,得…(10分) ②若g(x)有2个零点,1个在[0,2]内,另1个在[0,2]外, 则g(0)g(2)≤0,即(-m+3)(3m-1)≤0,解得,或m≥3…(12分) 经检验m=3有2个零点,不满足题意. 综上:m的取值范围是,或,或m>3…(14分)
复制答案
考点分析:
相关试题推荐
已知奇函数f(x)的定义域为R,且f(x)在[0,+∞)上是增函数,是否存在实数m使得manfen5.com 满分网,对一切manfen5.com 满分网,都成立?若存在,求出实数m的取值范围;若不存在,请说明理由.
查看答案
manfen5.com 满分网如图,已知AB⊥平面ACD,DE∥AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点.
(Ⅰ)求证:AF∥平面BCE;
(Ⅱ)求证:平面BCE⊥平面CDE.
查看答案
某化工企业生产甲、乙两种产品.根据市场调查与预测,甲产品的利润与投资成正比,其关系如图(1)所示;乙产品的利润与投资的算术平方根成正比,其关系如图(2)所示.
(Ⅰ)分别将甲、乙两种产品的利润表示为投资的函数关系式;
(Ⅱ)设该企业准备投资100万元资金,并全部投入甲、乙两种产品的生产.怎样分配这100万元资金,才能使企业获得最大利润,其最大利润为多少万元?(精确到1万元)
manfen5.com 满分网
查看答案
已知函数manfen5.com 满分网
(Ⅰ)求函数f(x)的最小值和最小正周期;
(Ⅱ)设△ABC的内角A、B、C的对边分别为a,b,c,且manfen5.com 满分网,若b=2a,求a,b的值.
查看答案
已知:数列{an}的前n项和为Sn,a1=3且当n≥2n∈N+满足Sn-1是an与-3的等差中项.
(1)求a2,a3,a4
(2)求数列{an}的通项公式.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.