满分5 > 高中数学试题 >

已知常数a、b、c都是实数,函数的导函数为f′(x) (Ⅰ)设a=f′(2),b...

已知常数a、b、c都是实数,函数manfen5.com 满分网的导函数为f′(x)
(Ⅰ)设a=f′(2),b=f′(1),c=f′(0),求函数f(x)的解析式;
(Ⅱ)设 f′(x)=(x-γ)(x-β),且1<γ≤β<2,求f′(1)•f′(2)的取值范围.
(I)先对函数求导,然后根据a=f′(2),b=f′(1),c=f′(0),代入可求a,b,c,进而可求函数f(x) (II)由f′(x)=(x-γ)(x-β),及 1<γ≤β<2,可得f′(1)•f′(2)=(1-γ)(1-β)(2-γ)(2-β)=[(γ-1)(2-γ)]•[(β-1)(2-β)],分别利用基本不等式可求取值范围 (Ⅰ)【解析】 由题意可得,f′(x)=x2+ax+b. ∴, 解得:. ∴. (II)∵f′(x)=(x-γ)(x-β). 又 1<γ≤β<2, ∴f′(1)=(1-γ)(1-β)>0,f′(2)=(2-γ)(2-β)>0 ∴f′(1)•f′(2)=(1-γ)(1-β)(2-γ)(2-β) =[(γ-1)(2-γ)]•[(β-1)(2-β)] ∴
复制答案
考点分析:
相关试题推荐
如图,在四棱锥P-ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
(Ⅰ)求证:平面PBD⊥平面PAC.
(Ⅱ)求四棱锥P-ABCD的体积V.

manfen5.com 满分网 查看答案
a、b是常数,关于x的一元二次方程x2+(a+b)x+3+manfen5.com 满分网=0有实数解记为事件A.
(1)若a、b分别表示投掷两枚均匀骰子出现的点数,求P(A);
(2)若a∈R、b∈R,-6≤a+b≤6且-6≤a-b≤6,求P(A).
查看答案
已知向量manfen5.com 满分网,定义函数manfen5.com 满分网
(Ⅰ)求函数f(x)的表达式,并指出其最大最小值;
(Ⅱ)在锐角△ABC中,角A,B,C的对边分别为a,b,c,且f(A)=1,bc=8,求△ABC的面积S.
查看答案
(几何证明选做题)如图,已知:△ABC内接于圆O,点D在OC的延长线上,AD是圆O的切线,若∠B=30°,AC=2,则OD的长为   
manfen5.com 满分网 查看答案
在极坐标系中,曲线ρ=4sinθ和ρcosθ=1相交于点A、B,则|AB|=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.