满分5 > 高中数学试题 >

已知椭圆过点(0,1),且离心率为. (Ⅰ)求椭圆C的方程; (Ⅱ)A,B为椭圆...

已知椭圆manfen5.com 满分网过点(0,1),且离心率为manfen5.com 满分网
(Ⅰ)求椭圆C的方程;
(Ⅱ)A,B为椭圆C的左右顶点,直线manfen5.com 满分网与x轴交于点D,点P是椭圆C上异于A,B的动点,直线AP,BP分别交直线l于E,F两点.证明:当点P在椭圆C上运动时,|DE|•|DF|恒为定值.
(Ⅰ)由题意可知:b=1,因为e=,且a2=b2+c2,可得a的值,进而求出椭圆的方程. (Ⅱ)由题意可得:A(-2,0),B(2,0).设P(x,y),由题意可得:-2<x<2,分别写出直线AP与直线BP的方程,再求出E、F两点的纵坐标,即可求出|DE|•|DF|的表达式,然后利用点P在椭圆上即可得到|DE|•|DF|为定值1. 【解析】 (Ⅰ)由题意可知,b=1, 又因为e=,且a2=b2+c2, 解得a=2, 所以椭圆的方程为. (Ⅱ)由题意可得:A(-2,0),B(2,0).设P(x,y),由题意可得:-2<x<2, 所以直线AP的方程为,令,则, 即; 同理:直线BP的方程为,令,则, 即; 所以= 而,即4y2=4-x2,代入上式, 所以|DE|•|DF|=1, 所以|DE|•|DF|为定值1.
复制答案
考点分析:
相关试题推荐
如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,EF⊥PB交PB于点F.
(1)若PD=DC=2,求三棱锥A-BDE的体积;
(2)证明PA∥平面EDB;
(3)证明PB⊥平面EFD.

manfen5.com 满分网 查看答案
统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y(升)关于行驶速度x(千米/小时)的函数解析式可以表示为:manfen5.com 满分网x+8(0<x≤120).已知甲、乙两地相距100千米.
(I)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?
(Ⅱ)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?
查看答案
已知函数manfen5.com 满分网
(Ⅰ)求manfen5.com 满分网的值;
(Ⅱ)求f(x)的最大值和最小正周期;
(Ⅲ)若manfen5.com 满分网,α是第二象限的角,求sin2α.
查看答案
(几何证明选讲)如图,已知PA是圆O的切线,切点为A,直线PO交圆O于B,C两点,AC=2,∠PAB=120°,则圆O的面积为______

manfen5.com 满分网 查看答案
已知⊙O的方程为manfen5.com 满分网(θ为参数),则⊙O上的点到直线manfen5.com 满分网(t为参数)的距离的最大值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.