满分5 > 高中数学试题 >

已知f(x)=ax3+bx2+cx在区间[0,1]上是增函数,在区间(-∞,0)...

已知f(x)=ax3+bx2+cx在区间[0,1]上是增函数,在区间(-∞,0),(1,+∞)上是减函数,又manfen5.com 满分网
(Ⅰ)求f(x)的解析式;
(Ⅱ)若在区间[0,m](m>0)上恒有f(x)≤x成立,求m的取值范围.
(Ⅰ)由“f(x)在区间[0,1]上是增函数,在区间(-∞,0),(1,+∞)上是减函数”,则有f'(0)=f'(1)=0,再由 .求解. (Ⅱ)首先将“f(x)≤x,x∈[0,m]成立”转化为“x(2x-1)(x-1)≥0,x∈[0,m]成立”求解. 【解析】 (Ⅰ)f'(x)=3ax2+2bx+c,由已知f'(0)=f'(1)=0, 即 解得 ∴f'(x)=3ax2-3ax, ∴, ∴a=-2, ∴f(x)=-2x3+3x2. (Ⅱ)令f(x)≤x,即-2x3+3x2-x≤0, ∴x(2x-1)(x-1)≥0, ∴或x≥1. 又f(x)≤x在区间[0,m]上恒成立, ∴.
复制答案
考点分析:
相关试题推荐
已知函数y=f(x)=-x3+ax2+b(a,b∈R).
(1)要使f(x)在(0,2)上单调递增,试求a的取值范围;
(2)当a<0时,若函数满足y极大值=1,y极小值=-3,试求函数y=f(x)的解析式.
查看答案
已知二次函数f(x)=ax2+bx-3在x=1处取得极值,且在(0,-3)点处的切线与直线2x+y=0平行.
(1)求f(x)的解析式;
(2)求函数g(x)=xf(x)+4x的单调递增区间及极值.
(3)求函数g(x)=xf(x)+4x在x∈[0,2]的最值.
查看答案
计算由曲线y=x2+2,y=3x以及x=0,x=2围成图形的面积S.
查看答案
已知复数z=(m2-8x+15)+(m2-9m+18)i在复平面内表示的点为A,实数m取什么值时,
(1)z为实数?z为纯虚数?
(2)A位于第三象限?
查看答案
已知正三角形内切圆的半径是高的manfen5.com 满分网,把这个结论推广到空间正四面体,类似的结论是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.