满分5 > 高中数学试题 >

椭圆的左、右焦点分别为F1、F2,过F1的直线l与椭圆交于A、B两点. (1)如...

椭圆manfen5.com 满分网的左、右焦点分别为F1、F2,过F1的直线l与椭圆交于A、B两点.
(1)如果点A在圆x2+y2=c2(c为椭圆的半焦距)上,且|F1A|=c,求椭圆的离心率;
(2)若函数manfen5.com 满分网,(m>0且m≠1)的图象,无论m为何值时恒过定点(b,a),求manfen5.com 满分网的取值范围.
(1)根据题意判断出∴△AF1F2为一直角三角形,利用勾股定理求得|F2A|利用椭圆的定义求得|AF1|+|AF2|=2a,进而求得a和c的关系,则椭圆的离心率可得. (2)利用函数的图象恒过定点,求得a和b,则c可求得,求得椭圆的两焦点,先看AB⊥x轴时,求得A,B的坐标,进而求得的坐标,则可求得;再看AB与x轴不垂直,设直线AB的方程,与椭圆的方程联立消去y,利用判别式求得k的范围,设出A,B的坐标,进而表示出x1+x2和x1x2,的坐标进而求得的表达式,利用k的范围确定的范围. 【解析】 (1)∵点A在圆x2+y2=c2上, ∴△AF1F2为一直角三角形, ∵ 由椭圆的定义知:|AF1|+|AF2|=2a,∴c+2c=2a ∴e===-1 (2)∵函数x的图象恒过点 ∴, 点F1(-1,0),F2(1,0), ①若AB⊥x轴,则A, ∴ ②若AB与x轴不垂直,设直线AB的斜率为k,则AB的方程为y=k(x+1) 由消去y得(1+2k2)x2+4k2x+2(k2-1)=0(*) ∵△=8k2+8>0,∴方程(*)有两个不同的实根. 设点A(x1,y1),B(x2,y2), 则x1,x2是方程(*)的两个根 , = ∵ , 由①②知.
复制答案
考点分析:
相关试题推荐
已知数列{an}满足manfen5.com 满分网manfen5.com 满分网
(1)求a2,a3,a4
(2)是否存在实数t,使得数列manfen5.com 满分网是公差为-1的等差数列,若存在求出t的值,否则,请说明理由;
(3)记manfen5.com 满分网数列{bn}的前n项和为Sn,求证:manfen5.com 满分网
查看答案
如图,斜三棱柱ABC-A1B1C1,已知侧面BB1C1C与底面ABC垂直且∠BCA=90°,∠B1BC=60°,BC=BB1=2,若二面角A-B1B-C为30°.
(Ⅰ)证明:AC⊥平面BB1C1C;
(Ⅱ)求AB1与平面BB1C1C所成角的正切值;
(Ⅲ)在平面AA1B1B内找一点P,使三棱锥P-BB1C为正三棱锥,并求P到平面BB1C距离.

manfen5.com 满分网 查看答案
在△OAB的边OA、OB上分别有一点P、Q,已知manfen5.com 满分网manfen5.com 满分网=1:2,manfen5.com 满分网manfen5.com 满分网=3:2,连接AQ、BP,设它们交于点R,若manfen5.com 满分网=manfen5.com 满分网manfen5.com 满分网=manfen5.com 满分网
(Ⅰ)用manfen5.com 满分网manfen5.com 满分网表示manfen5.com 满分网
(Ⅱ)过R作RH⊥AB,垂足为H,若|manfen5.com 满分网|=1,|manfen5.com 满分网|=2,manfen5.com 满分网manfen5.com 满分网的夹角manfen5.com 满分网,求manfen5.com 满分网的范围.
查看答案
如图是两个独立的转盘(A)、(B),在两个图中三个扇形区域的圆心角分别为60°、120°、180°.用这两个转盘进行玩游戏,规则是:同时转动两个转盘待指针停下(当两个转盘中任意一个指针恰好落在分界线时,则这次转动无效,重新开始),记转盘(A)指针所对的区域数为x,转盘(B)指针所对的区域为y,x、y∈{1,2,3},设x+y的值为ξ,每一次游戏得到奖励分为ξ
(1)求x<2且y>1的概率;
(2)某人进行了12次游戏,求他平均可以得到的奖励分.

manfen5.com 满分网 查看答案
函数y=manfen5.com 满分网+manfen5.com 满分网+manfen5.com 满分网的最小值为    ,最大值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.