满分5 > 高中数学试题 >

设△ABC的内角A,B,C所对的边分别为a,b,c且acosC+c=b. (1)...

设△ABC的内角A,B,C所对的边分别为a,b,c且acosC+manfen5.com 满分网c=b.
(1)求角A的大小;
(2)若a=1,求△ABC的周长l的取值范围.
(1)首先利用正弦定理化边为角,可得2RsinAcosC+2RsinC=2RsinB,然后利用诱导公式及两角和与差的正弦公式化简可得cosA=,进而求出∠A. (2)首先利用正弦定理化边为角,可得l=1+,然后利用诱导公式将sinC转化为sin(A+B),进而由两角和与差的正弦公式化简可得l=1+2sin(B+),从而转化成三角函数求值域问题求解;或者利用余弦定理结合均值不等式求解. 【解析】 (1)∵accosC+c=b, 由正弦定理得2RsinAcosC+2RsinC=2RsinB, 即sinAcosC+sinC=sinB, 又∵sinB=sin(A+C)=sinAcosC+cosAsinC, ∴sinC=cosAsinC, ∵sinC≠0, ∴, 又∵0<A<π, ∴. (2)由正弦定理得:b==,c=, ∴l=a+b+c =1+(sinB+sinC) =1+(sinB+sin(A+B)) =1+2(sinB+cosB) =1+2sin(B+), ∵A=,∴B,∴B+,∴, 故△ABC的周长l的取值范围为(2,3]. (2)另【解析】 周长l=a+b+c=1+b+c, 由(1)及余弦定理a2=b2+c2-2bccosA, ∴b2+c2=bc+1, ∴(b+c)2=1+3bc≤1+3()2, 解得b+c≤2, 又∵b+c>a=1, ∴l=a+b+c>2, 即△ABC的周长l的取值范围为(2,3].
复制答案
考点分析:
相关试题推荐
已知数列{an}的前n项和为Sn,a1=1,且3an+1+2Sn=3(n为正整数)
(Ⅰ)求出数列{an}的通项公式;
(Ⅱ)若对任意正整数n,k≤Sn恒成立,求实数k的最大值.
查看答案
已知命题p:实数m满足m2-7am+12a2<0(a>0),命题q:实数m满足方程manfen5.com 满分网表示焦点在y轴上的椭圆,且非q是非p的充分不必要条件,求a的取值范围.
查看答案
在△ABC中,三边a、b、c成等差数列,则角B的取值范围是    查看答案
已知实数x,y满足manfen5.com 满分网,则z=2x+y的最小值是    查看答案
已知各项均为正数的等比数列manfen5.com 满分网=manfen5.com 满分网的最小值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.