满分5 > 高中数学试题 >

设数列{an}的通项是关于x的不等式x2-x<(2n-1)x (n∈N*)的解集...

设数列{an}的通项是关于x的不等式x2-x<(2n-1)x (n∈N*)的解集中整数的个数.数列{an}的前n项和为Sn
(Ⅰ)求an
(Ⅱ)设m,k,p∈N*,m+p=2k,求证:manfen5.com 满分网+manfen5.com 满分网manfen5.com 满分网
(Ⅲ)对于(Ⅱ)中的命题,对一般的各项均为正数的等差数列还成立吗?如果成立,请证明你的结论,如果不成立,请说明理由.
(1)由题意知数列{an}的通项是关于x的不等式的解集中整数的个数,题目首先应该解不等式,从不等式的解集中得到整数的个数,得到数列的通项,用等差数列的定义来验证. (2)根据前面结果写出要用的前几项的和,从不等式的一侧入手,利用均值不等式得到要求的结论. (3)本题是对上一问的延伸,方法和前面的类似,但题目所给的一般的各项均为正数的等差数列在整理时增加了难度,题目绝大部分工作是算式的整理,注意不能出错. 【解析】 (1)不等式x2-x<(2n-1)x 即x(x-2n)<0,解得:0<x<2n,其中整数有2n-1个, 故 an=2n-1. (2)由(1)知,∴Sm=m2,Sp=p2,Sk=k2. 由== ≥=0, 即≥.    (3)结论成立,证明如下: 设等差数列{an}的首项为a1,公差为d,则, ∵=, 把m+p=2k代入上式化简得Sm+Sp-2Sk=≥0,…16分. ∴Sm+Sp≥2Sk. 又 Sm•Sp ==  ≤==. ∴=≥=,故 +≥ 成立.
复制答案
考点分析:
相关试题推荐
某水库堤坝因年久失修,发生了渗水现象,当发现时已有200m2的坝面渗水.经测算知渗水现象正在以每天4m2的速度扩散.当地政府积极组织工人进行抢修.已知每个工人平均每天可抢修渗水面积2m2,每人每天所消耗的维修材料费75元,劳务费50元,给每人发放50元的服装补贴,每渗水1m2的损失为250元.现在共派去x名工人,抢修完成共用n天.
(Ⅰ)写出n关于x的函数关系式;
(Ⅱ)要使总损失最小,应派去多少名工人去抢修(总损失=渗水损失+政府支出).
查看答案
设椭圆manfen5.com 满分网的左,右两个焦点分别为F1,F2,短轴的上端点为B,短轴上的两个三等分点为P,Q,且F1PF2Q为正方形.
(1)求椭圆的离心率;
(2)若过点B作此正方形的外接圆的切线在x轴上的一个截距为manfen5.com 满分网,求此椭圆方程.

manfen5.com 满分网 查看答案
设△ABC的内角A,B,C所对的边分别为a,b,c且acosC+manfen5.com 满分网c=b.
(1)求角A的大小;
(2)若a=1,求△ABC的周长l的取值范围.
查看答案
已知数列{an}的前n项和为Sn,a1=1,且3an+1+2Sn=3(n为正整数)
(Ⅰ)求出数列{an}的通项公式;
(Ⅱ)若对任意正整数n,k≤Sn恒成立,求实数k的最大值.
查看答案
已知命题p:实数m满足m2-7am+12a2<0(a>0),命题q:实数m满足方程manfen5.com 满分网表示焦点在y轴上的椭圆,且非q是非p的充分不必要条件,求a的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.