满分5 > 高中数学试题 >

设定点F1(0,-3)、F2(0,3),动点P满足条件|PF1|+|PF2|=a...

设定点F1(0,-3)、F2(0,3),动点P满足条件|PF1|+|PF2|=a+manfen5.com 满分网(a>0),则点P的轨迹是( )
A.椭圆
B.线段
C.不存在
D.椭圆或线段
由基本不等式可得 a+≥6,当a+=6 时,点P满足|PF1|+|PF2|=|F1F2|,P的轨迹是线段F1F2;a+>6时,点P满足|PF1|+|PF2|为常数,且大于线段|F1F2|的长,P的轨迹是椭圆. 【解析】 ∵a>0,∴a+≥2=6. 当  a+=6=|F1F2|时,由点P满足条件|PF1|+|PF2|=a+=|F1F2|得,点P的轨迹是线段F1F2. 当  a+>6=|F1F2|时,由点P满足条件|PF1|+|PF2|=a+>|F1F2|得,点P的轨迹是以F1、F2 为焦点的椭圆. 综上,点P的轨迹是线段F1F2 或椭圆, 故选 D.
复制答案
考点分析:
相关试题推荐
若方程x2+ky2=2表示焦点在y轴上的椭圆,那么实数k的取值范围是( )
A.(0,+∞)
B.(0,2)
C.(1,+∞)
D.(0,1)
查看答案
若椭圆的两焦点为(-2,0)和(2,0),且椭圆过点manfen5.com 满分网,则椭圆方程是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
函数f(x)的定义域为D={x|x≠0},且满足对于任意x1、x2∈D,有f=f(x1)+f(x2).
(1)求f(1)的值;
(2)判断f(x)的奇偶性并证明;
(3)如果f(4)=1,f(3x+1)+f(2x-6)≤3,且f(x)在(0,+∞)上是增函数,求x的取值范围.
查看答案
已知f(x)=x2-2ax+5(a>1)
(Ⅰ)若f(x)的定义域和值域均为[1,a],求a的值;
(Ⅱ)若f(x)在区间(-∞,2]上是减函数,且对任意的x1,x2∈[1,a+1],总有|f(x1)-f(x2)|≤4,求a的取值范围.
查看答案
某上市股票在30天内每股的交易价格P(元)与时间t(天)组成有序数对(t,P),点(t,P)落在下图中的两条线段上,该股票在30天内(包括30天)的日交易量Q(万股)与时间t(天)的部分数据如下表所示.
第t天4101622
Q(万股)36302418
(1)根据提供的图象,写出该种股票每股交易价格P(元)与时间t(天)所满足的函数关系式;
(2)根据表中数据确定日交易量Q(万股)与时间t(天)的一次函数关系式;
(3)在(2)的结论下,用y(万元)表示该股票日交易额,写出y关于t的函数关系式,并求出这30天中第几日交易额最大,最大值为多少?

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.